Aboutalebi P, M’zoughi F, Garrido I, Garrido AJ (2021a) Performance analysis on the use of oscillating water columns in barge-based floating offshore wind turbines. Mathematics 9: 475. https://doi.org/10.3390/math9050475
Aboutalebi P, M’zoughi F, Martija I, Garrido I, Garrido AJ (2021b) Switching control strategy for oscillating water columns based on response amplitude operators for floating offshore wind turbines stabilization. Appl Sci 11: 5249. https://doi.org/10.3390/app11115249
Aboutalebi P, M’zoughi F, Garrido I, Garrido AJ (2022) A control technique for hybrid floating offshore wind turbines using oscillating water columns for generated power fluctuation reduction. J Comp Design Eng 10: 250-265. https://doi.org/10.1093/jcde/qwac137
Aboutalebi P, Garrido AJ, Garrido I, Nguyen DT, Gao Z (2023) Hydrodynamic and static stability analysis of a hybrid offshore wind-wave energy generation: an expansion of semisubmersible floating wind turbine concept. Proc EWTEC 2023 15th European Wave Tidal Energy Conf 15:628. https://doi.org/10.36688/ewtec-2023-628
Aboutalebi P, Garrido AJ, Garrido I, Nguyen DT, Gao Z (2024) Hydrostatic stability and hydrodynamics of a floating wind turbine platform integrated with oscillating water columns: a design study. Renew Energy 221: 119824. https://doi.org/10.1016/j.renene.2023.119824
Ansys (2020) AQWA theory manual. AQWA: Canonsburg, PA, USA
Arinaga RA, Cheung KF (2012) Atlas of global wave energy from 10 years of reanalysis and hindcast data. Renew Energy 39: 49-64. https://doi.org/10.1016/j.renene.2011.06.039
Asai T, Tsukamoto S, Nemoto Y, Yoshimizu K, Watanabe U, Taniyama Y (2023) Numerical simulation of a floating offshore wind turbine incorporating an electromagnetic inerter-based device for vibration suppression and wave energy conversion. Struct Control Health Monit 5513733. https://doi.org/10.1155/2023/5513733
Ayub MW, Hamza A, Aggidis GA, Ma X (2023) A review of power co-generation technologies from hybrid offshore wind and wave energy. Energies 16: 550. https://doi.org/10.3390/en16010550
Babarit A, Hals J, Muliawan MJ, Kurniawan A, Moan T, Krokstad J (2012) Numerical benchmark study of a selection of wave energy converters. Energy 41: 44-63. https://doi.org/10.1016/j.renene.2011.10.002
Bachynski EE, Moan T (2013) Point absorber design for a combined wind and wave energy converter on a tension-leg platform. Proc ASME 2013 32nd Int Conf Ocean Offshore Arct Eng OMAE2013-10429. https://doi.org/10.1115/OMAE2013-10429
Bachynski EE, Moan T (2014) Second order wave force effects on tension leg platform wind turbines in misaligned wind and waves. Proc ASME 2014 33rd Int Conf Ocean Offshore Arct Eng OMAE2014-23131. https://doi.org/10.1115/OMAE2014-23131
Bachynski EE, Thys M, Sauder T, Chabaud V, Saether LO (2016) Real-time hybrid model testing of a braceless semi-submersible wind turbine. Part II: Experimental results. Proc ASME 2016 35th Int Conf Ocean Offshore Arct Eng OMAE2016-54437. https://doi.org/10.1115/OMAE2016-54437
Bracco G (2010) ISWEC: A gyroscopic wave energy converter. Lap Lambert Academic Publication, Milan, Italy
Bagbanci H, Karmakar D, Guedes Soares C (2012) Review of offshore floating wind turbines concepts. Guedes Soares C, Garbatov Y, Sutulo S, Santos TA. Eds. Maritime Engineering and Technology. London, UK Taylor & Francis Group, 553-562
Calvário M, Gaspar JF, Kamarlouei M, Hallak TS, Guedes Soares C (2020) Oil-hydraulic power take-off concept for an oscillating surge converter. Renew Energy 159: 1297-1309. https://doi.org/10.1016/j.renene.2020.06.002
Cao Q, Xiao L, Guo X, Liu M (2020) Second-order responses of a conceptual semi-submersible 10 MW wind turbine using full quadratic transfer functions. Renew Energy 152: 653-668. https://doi.org/10.1016/j.renene.2020.02.030
Cao Q, Xiao L, Cheng Z, Liu M (2021) Dynamic response of a 10 MW semi-submersible wind turbine at an intermediate water depth: A comprehensive numerical and experimental comparison. Ocean Eng 232: 109138. https://doi.org/10.1016/j.oceaneng.2021.109138
Cao F, Yu M, Liu B, Wei Z, Xue L, Han M, Shi H (2023a) Progress of combined wind and wave energy harvesting devices and related coupling simulation techniques. J Mar Sci Eng 11(1): 212. https://doi.org/10.3390/jmse11010212
Cao F, Yu M, Han M, Liu B, Wei Z, Jiang J, Tian H, Shi H, Li Y (2023b) WECs microarray effect on the coupled dynamic response and power performance of a floating combined wind and wave energy system. Renew Energy 219: 119476. https://doi.org/10.1016/j.renene.2023.119476
Castro-Santos L, Martins E, Guedes Soares C (2016) Cost assessment methodology for combined wind and wave floating offshore renewable energy systems. Renew Energy 97: 866-880. https://doi.org/10.1016/j.renene.2016.06.016
Castro-Santos L, Martins E, Guedes Soares C (2017) Economic comparison of technological alternatives to harness offshore wind and wave energies. Energy 140: 1121-1130. https://doi.org/10.1016/j.energy.2017.08.103
Celesti ML, Paduano B, Pena-Sánchez Y, Pasta E, Faedo N, Ringwood JV (2023) On the behavior of a combined wind-wave energy conversion platform under energy-maximizing control conditions. OCEANS 2023 Limerick 1-6. https://doi.org/10.1109/OCEANSLimerick52467.2023.10244485
Chaitanya Sai K, Patil AH, Karmakar D (2019) Motion response analysis of floating wind turbine combined with wave energy converter. Proc APAC 2019 10th Int Conf Asian Pacific Coast 1099-1106. https://doi.org/10.1007/978-981-15-0291-0_150
Chakrabarti SK (1999) Response of multiple structures including interaction. Proc VLFS 1999 3rd Int Workshop Very Large Float Struct, 795-804
Chakrabarti SK (2000) Hydrodynamic interaction forces on multi-moduled structures. Ocean Eng 27: 1037-1063
Chen M, Wang R, Xiao P, Zhu L, Li F, Sun L (2020) Numerical analysis of a floating semi-submersible wind turbine integrated with a point absorber wave energy convertor. Proc ISOPE 2020 13th Int Ocean Polar Eng Conf, 300-307
Chen M, Xiao P, Zhou H, Li CB, Zhang X (2022a) Fully coupled analysis of an integrated floating wind-wave power generation platform in operational sea-state. Front Energy Res 10: 931057. https://doi.org/10.3389/fenrg.2022.931057
Chen M, Ding J, Yang Y, Zhou H, Tao T, Liu S, Sun L, Hua L (2024) Performance analysis of a floating wind-wave power generation platform based on the frequency domain model. J Mar Sci Eng 12: 206. https://doi.org/10.3390/jmse12020206
Chen Z, Yu J, Sun J, Tan M, Yang S, Ying Y, Qian P, Zhang D, Si Y (2022b) Load reduction of semi-submersible floating wind turbines by integrating heaving-type wave energy converters with bang-bang control. Front Energy Res 10: 929307. https://doi.org/10.3389/fenrg.2022.929307
Cornett AM (2008) A global wave energy resource assessment. Proc ISOPE 2008 18th Int Offshore Polar Eng Conf, Vancouver, Canada, 1-9
CorPower Ocean (2023) CorPower Ocean announces new wave energy breakthrough. Available online. https://corpowerocean.com/corpower-ocean-announces-wave-energy-breakthrough/[Accessed 14 Apr 2024]
Dankelmann S, Visser B, Gupta N, Serna J, Counago B, Urruchi A, Fernández C, Garcia RG, Jurado A (2016) TELWIND-Integrated telescopic tower combined with an evolved spar floating substructure for low-cost deep water offshore wind and next generation of 10 MW+ wind turbines. Wind Europe 2016
Davis NN, Badger J, Hahmann AN, Hansen BO, Mortensen NG, Kelly M, Larsén XG, Olsen BT, Floors R, Lizcano G, Casso P, Lacave O, Bosch A, Bauwens I, Knight OJ, van Loon AP, Fox R, Parvanyan T, Hansen SBK, Heathfield D, Onninen M, Drummond R (2023) The global wind atlas: a high-resolution dataset of climatologies and associated web-based application. Bulletin of the American Meteorological Society 104(8): E1507-E1525. https://doi.org/10.1175/BAMS-D-21-0075.1
Díaz H, Guedes Soares C (2020) Review of the current status, technology and future trends of offshore wind farms. Ocean Eng 209: 107381. https://doi.org/10.1016/j.oceaneng.2020.107381
Deng Z, Zhang B, Miao Y, Zhao B, Wang Q, Zhang K (2023) Multi-objective optimal design of the wind-wave hybrid platform with the coupling interaction. J Ocean Univ China 22: 1165-1180. https://doi.org/10.1007/s11802-023-5242-0
Dong X, Li Y, Li D, Cao F, Jiang X, Shi H (2022) A state-of-the-art review of the hybrid wind-wave energy converter. Prog Energy 4: 042004. https://doi.org/10.1088/2516-1083/ac821d
Edwards EC, Holcombe A, Brown S, Ransley E, Hann M, Greaves D (2024) Trends in floating offshore wind platforms: A review of early-stage devices. Renew Sust Energy Rev 193: 114271. https://doi.org/10.1016/j.rser.2023.114271
ESMAP-Energy Sector Management Assistance Program (2023) Global Wind Atlas version 3.3. Available online. https://www.esmap.org/esmap_offshore-wind [Accessed 14 Apr 2024]
Falc?o AFO, Sarmento AJNA, Gato LMC, Brito-Melo A (2020) The Pico OWC wave power plant: Its lifetime from conception to closure 1986-2018. Appl Ocean Res 98: 102104. https://doi.org/10.1016/j.apor.2020.102104
Fenu B, Attanasio V, Casalone P, Novo R, Cervelli G, Bonfanti M, Sirigu SA, Bracco G, Mattiazzo G (2020) Analysis of a gyroscopic-stabilized floating offshore hybrid wind-wave platform. J Mar Sci Eng 8: 439. https://doi.org/10.3390/jmse8060439
Fenu B, Bonfanti M, Bardazzi A, Pilloton C, Lucarelli A, Mattiazzo G (2023) Experimental investigation of a Multi-OWC wind turbine floating platform. Ocean Eng 281: 114619. https://doi.org/10.1016/j.oceaneng.2023.114619
Frandsen JB, Doblaré M, Rodríguez P, Reyes M (2012) Technical assessment of the Pelamis Wave Energy Converter concept. AR_PEL_TA_rep_v1. Abengoa Seapower
Gaertner E et al (2020) Definition of the IEA 15-Megawatt offshore reference wind. NREL/TP-5000-75698. Nat Renew Energy Lab. https://www.nrel.gov/docs/fy20osti/75698.pdf [Accessed 10 Jan 2024]
Galván J, Sánchez-Lara MJ, Mendikoa I, Pérez-Morán G, Nava V, Rodríguez-Arias R (2018) NAUTILUS-DTU10 MW Floating Offshore Wind Turbine at Gulf of Maine: Public numerical models of an actively ballasted semisubmersible. J Phys 1102: 012015. https://doi.org/10.1088/1742-6596/1102/1/012015
Gao Q, Bechlenberg A, Jayawardhana B, Ertugrul N, Vakis AI, Ding B (2024) Techno-economic assessment of offshore wind and hybrid wind-wave farms with energy storage systems. Renew Sust Energy Rev 192: 114263. https://doi.org/10.1016/j.rser.2023.114263
Gaspar JF, Hallak TS, Guedes Soares C (2019) Semi-submersible platform concept for a concentric array of wave energy converters. In: Guedes Soares C (ed) Advances in Renewable Energies Offshore, Taylor & Francis Group, London, pp 307-314
Gaspar JF, Guedes Soares C (2020) Variable geometry Wave Energy Conversion system for floating platforms. https://doi.org/10.54499/PTDC/EME-REN/0242/2020
Gaspar JF, Kamarlouei M, Thiebaut F, Guedes Soares C (2021) Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions. Renew Energy 177: 871-883. https://doi.org/10.1016/j.renene.2021.05.096
Ghafari HR, Ghassemi H, Neisi A (2021) Numerical study of the Wavestar wave energy converter with multi-point-absorber around DeepCWind semisubmersible floating platform. Ocean Eng 232: 109177. https://doi.org/10.1016/j.oceaneng.2021.109177
Ghafari HR, Ghassemi H, Neisi A (2022) Power matrix and dynamic response of the hybrid Wavestar-DeepCWind platform under different diameters and regular wave conditions. Ocean Eng 247: 110734. https://doi.org/10.1016/j.oceaneng.2022.110734
Ghigo A, Cottura L, Caradonna R, Bracco G, Mattiazzo G (2020) Platform optimization and cost analysis in a floating offshore wind farm. J Mar Sci Eng 8(11): 835. https://doi.org/10.3390/jmse8110835
Guedes Soares C, Bhattacharjee J, Karmakar D (2014) Overview and prospects for development of wave and offshore wind energy. Brodogradnja, 65(2): 87-109
Guedes Soares C, Bhattacharjee J, Tello M, Pietra L (2012) Review and classification of Wave Energy Converters. Guedes Soares C, Garbatov Y, Sutulo S, Santos TA, Eds. Maritime Engineering and Technology. London, UK Taylor & Francis Group, 585-594
GWEC-Global Wind Energy Council (2024) Global Wind Report. https://gwec.net/global-wind-report-2024/[Accessed 17 Apr 2024]
Hallak TS, Gaspar JF, Kamarlouei M, Calvário M, Mendes MJGC, Thiebaut F, Guedes Soares C (2018) Numerical and experimental analysis of a hybrid wind-wave offshore floating platform’s hull. Proc ASME 2018 37th Int Conf Ocean Offshore Arct Eng OMAE2018-78744. https://doi.org/10.1115/OMAE2018-78744
Hallak TS, Karmakar D, Guedes Soares C (2021) Hydrodynamic performance of semi-submersible FOWT combined with pointabsorber WECs. In: Guedes Soares C, Ed. Maritime Technology and Engineering 5 Volume 2, Taylor & Francis Group, London, 577-585. https://doi.org/10.1201/9781003216599
Hallak TS, Guedes Soares C, Sainz O, Hernandez, S Arévalo A (2022a) Time domain analysis of the WIND-bos spar in regular waves. Trends in Renewable Energies Offshore. Guedes Soares, Ed. Taylor & Francis Group, London, UK, 559-566. https://doi.org/10.1201/9781003360773-64
Hallak TS, Guedes Soares C, Sainz O, Hernández S, Arévalo A (2022b) Hydrodynamic analysis of the WIND-bos spar floating offshore wind turbine. J Mar Sci Eng 10(12): 1824. https://doi.org/10.3390/jmse10121824
Hallak TS, Gaspar JF, Guedes Soares C (2023) Dynamic simulation of wave point absorbers connected to a central floating platform. Proc EWTEC 2023 15th European Wave Tidal Energy Conf 15: 496. https://doi.org/10.36688/ewtec-2023-496
Henderson AR, Bulder B, Huijsmans R, Peeringa J, Pierik J, Snijders E, van Hees M, Wijnants GH, Wolf MJ (2003) Feasibility study of floating windfarms in shallow offshore sites. Wind Eng 27(5): 405-418. https://doi.org/10.1260/030952403322771002
Hmedi M, Uzunoglu E, Medina-Manuel A, Mas-Soler J, Vittori F, Pires O, Azcona J, Souto-Iglesias A, Guedes Soares C (2022) Experimental analysis of CENTEC-TLP self-stable platform with a 10 MW turbine. J Mar Sci Eng 10(12): 1910. https://doi.org/10.3390/jmse10121910
Homayoun E, Panahi S, Ghassemi H, He G, Liu P (2022) Power absorption of combined wind turbine and wave energy converter mounted on braceless floating platform. Ocean Eng 266: 113027. https://doi.org/10.1016/j.oceaneng.2022.113027
Hsu IJ, Ivanov G, Ma KT, Huang ZZ, Wu HT, Huang YT, Chou M (2022) Optimization of semi-submersible hull design for floating offshore wind turbines. Proc ASME 2022 41st Int Conf Ocean Offshore Arct Eng OMAE2022-86751. https://doi.org/10.1115/OMAE2022-86751
Hu J, Zhou B, Vogel C, Liu P, Wilden R, Sun K, Zang J, Geng J, Jin P, Cui L, Jiang B, Collu M (2020) Optimal design and performance analysis of a hybrid system combining a floating wind platform and wave energy converters. Appl Energy 269: 114998. https://doi.org/10.1016/j.apenergy.2020.114998
International Renewable Energy Agency (2023) Levelized Cost of Energy by Technology. Our World in Data. https://ourworldindata.org/grapher/levelized-cost-of-energy [Accessed 29 Dec 2023]
Jin P, Zheng Z, Zhou Z, Zhou B, Wang L, Yang Y, Liu Y (2023) Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system. Energy 282: 128889. https://doi.org/10.1016/j.energy.2023.128889
Jonkman JM (2007) Dynamics modeling and loads analysis of an offshore floating wind turbine. NREL/TP-500-41958. Nat Renew Energy Lab. https://www.nrel.gov/docs/fy08osti/41958.pdf [Accessed 10 Jan 2024]
Jonkman JM, Buhl ML (2004) FAST User’s Guide. NREL/EL-500-29798. Nat Renew Energy Lab. https://www.nrel.gov/docs/fy06osti/38230.pdf [Accessed 17 Apr 2024]
Jonkman JM, Buhl ML (2007) Development and verification of a fully coupled simulator for offshore wind turbines. NREL/CP-500-40979. Nat Renew Energy Lab. https://www.nrel.gov/docs/fy07osti/40979.pdf [Accessed 14 Apr 2024]
Kamarlouei M, Gaspar JF, Calvário M, Hallak TS, Guedes Soares C, Mendes MJGC, Thiebaut F (2019) Prototyping and wave tank testing of a floating platform with point absorbers. In: Guedes Soares C, ed. Advances in Renewable Energies Offshore, Taylor & Francis Group, London, 421-428
Kamarlouei M, Gaspar JF, Hallak TS, Guedes Soares C (2020a) Survivability analysis of the mooring system of a combined wind and wave harvesting concept. In: Guedes Soares C, Ed. Developments in Renewable Energies Offshore, Taylor & Francis Group, London, 282-290. https://doi.org/10.1201/9781003134572-34
Kamarlouei M, Gaspar JF, Calvário M, Hallak TS, Mendes MJGC, Thiebaut F, Guedes Soares C (2020b) Experimental analysis of wave energy converters concentrically attached on a floating offshore platform. Renew Energy 152: 1171-1185. https://doi.org/10.1016/j.renene.2020.01.078
Kamarlouei M, Hallak TS, Gaspar JF, Calvario M, Guedes Soares C (2023) Torus-shaped wave energy converter attached to a hinged arm. Journal of Offshore Mechanics and Arctic Engineering, 146: 012003
Kamarlouei M, Hallak TS, Gaspar JF, Guedes Soares C (2022a) Evaluation of the stiffness mechanism on the performance of a hinged wave energy converter. J Offshore Mech Arct Eng 144(5): 052002. https://doi.org/10.1115/1.4054791
Kamarlouei M, Gaspar, JF, Calvário M, Hallak TS, Mendes MJGC, Thiebaut F, Guedes Soares C (2022b) Experimental study of wave energy converter arrays adapted to a semi-submersible wind platform. Renew Energy 188: 145-163. https://doi.org/10.1016/j.renene.2022.02.014
Kardakaris K, Boufidi I, Soukissian T (2021) Offshore wind and wave energy complementarity in the Greek Seas based on ERA5 data. Atmosphere 12: 1360. https://doi.org/10.3390/atmos12101360
Karimirad M, Koushan K (2016) WindWEC: Combining wind and wave energy inspired by Hywind and Wavestar. IEEE 2016 5th Int Conf Renew Energy Res Appl (ICRERA), 96-101. https://doi.org/10.1109/ICRERA.2016.7884433
Karimirad M, Bachynski EE, Berthelsen PA, Ormberg H (2017) Comparison of real-time hybrid model testing of a braceless semi-submersible wind turbine and numerical simulations. Proc ASME 2017 36th Int Conf Ocean Offshore Arct Eng OMAE2017-61121. https://doi.org/10.1115/OMAE2017-61121
Karmakar D, Guedes Soares C (2015) Review of the present concepts of multi-use offshore platforms. In: Guedes Soares C, Ed. Renewable Energies Offshore, Taylor & Francis Group, London, 867-875
Kim NH, Cao TNT (2008) Wave force analysis of the two vertical cylinders by boundary element method. J Civil Eng 12(6): 359-366. https://doi.org/10.1007/s12205-008-0359-7
Le C, Li Y, Ding H (2019) Study on the coupled dynamic responses of a submerged floating wind turbine under different mooring conditions. Energies 12: 418. https://doi.org/10.3390/en12030418
Legaz MJ, Coronil D, Mayorga P, Fernandez J (2018) Study of a hybrid renewable energy platform: W2Power. Proc ASME 2018 37th Int Conf Ocean Offshore Arct Eng, OMAE2018-77690. https://doi.org/10.1115/OMAE2018-77690
Li L, Gao Y, Yuan Z, Day S, Hu Z (2018) Dynamic response and power production of a floating integrated wind, wave and tidal energy system. Renew Energy 116: 412-422. https://doi.org/10.1016/j.renene.2017.09.080
Li Y, Yan S, Shi H, Ma Q, Li D, Cao F (2023) Hydrodynamic analysis of a novel multi-body wind-wave energy system. Renew Energy 219: 119477. https://doi.org/10.1016/j.renene.2023.119477
Lin Y, Fei P (2022) Experimental study on hydrodynamic response of semisubmersible platform-based bottom-hinged flap wave energy converter. Shanghai Jiao Tong Univ (Sci) 27(3): 307-315. https://doi.org/10.1007/s12204-022-2443-4
Luan C, Gao Z, Moan T (2016) Design and analysis of a braceless steel 5-MW semi-submersible wind turbine. Proc ASME 2016 35th Int Conf Ocean Offshore Arct Eng OMAE2016-54848. https://doi.org/10.1115/OMAE2016-54848
Lucas J, Livingstone M, Vuorinen M, Cruz J (2012) Development of a wave energy converter (WEC) design tool-application to the WaveRoller WEC including validation of numerical estimates. Proc 4th Int Conf Ocean Energy 1-6
Maritime Journal (2024) Portugal enters the offshore race. Maritime Journal-Commercial Marine Business. https://www.maritimejournal.com/environment/portugal-enters-the-offshore-race/1489970.article [Accessed 4 Jan 2024]
Marquis L, Kramer M, Frigaard P (2010) First power production results from the Wave Star Roshage wave energy converter. Proc ICOE 2010 3rd Int Conf Ocean Energy. https://tethys-engineering.pnnl.gov/sites/default/files/publications/marquisetal2010.pdf [Accessed 19 Jan 2024]
Mavrakos SA (1991) Hydrodynamic coefficients for groups of interacting vertical axisymmetric bodies. Ocean Eng 18(5): 485-515. https://doi.org/10.1016/0029-8018(91)90027-N
Mavrakos SA, McIver P (1997) Comparison of methods for computing hydrodynamic characteristics of arrays of wave power devices. Appl Ocean Res 19:283-291. https://doi.org/10.1016/S0141-1187(97)00029-1
Mavrakos SA, Kalofonos A (1997) Power absorption by arrays of interacting vertical axisymmetric wave-energy devices. J Offshore Mech Arct Eng 146(2): 244-251. https://doi.org/10.1115/1.2829103
Mattiazzo G (2019) State of the art and perspectives of wave energy in the Mediterranean Sea: Backstage of ISWEC. Front Energy Res 7: 114. https://doi.org/10.3389/fenrg.2019.00114
McTiernan KL, Sharman KT (2020) Review of hybrid wind and wave energy systems. J Phys Conf Series 1452: 012016. https://doi.org/10.1088/1742-6596/1452/1/012016
Mei X, Xiong M (2021) Effects of second-order hydrodynamics on the dynamic responses and fatigue damage of a 15 MW floating offshore wind turbine. J Mar Sci Eng 9(11): 1232. https://doi.org/10.3390/jmse9111232
Michailides C, Luan C, Gao Z, Moan T (2014) Effect of flap type wave energy converters on the response of a semi-submersible wind turbine in operational conditions. Proc ASME 2014 33rd Int Conf Ocean Offshore Arct Eng OMAE2014-24065. https://doi.org/10.1115/OMAE2014-24065
Michailides C, Gao Z, Moan T (2016) Experimental study of the functionality of a semisubmersible wind turbine combined with flap-type wave energy converters. Renew Energy 93: 685-690. https://doi.org/10.1016/j.renene.2016.03.024
Muliawan MJ, Gao Z, Moan T, Babarit A (2011) Analysis of a two-body floating wave energy converter with the particular focus on the effects of power take-off and mooring systems on energy capture. Proc ASME 2011 30th Int Conf Ocean Offshore Arct Eng OMAE2011-49135. https://doi.org/10.1115/OMAE2011-49135
Muliawan MJ, Karimirad M, Moan T, Gao Z (2012) STC (Spar-Torus Combination): A combined spar-type floating wind turbine and large point absorber floating wave energy converter-promising and challenging. Proc ASME 2012 31st Int Conf Ocean Offshore Arct Eng OMAE2012-84272. https://doi.org/10.1115/OMAE2012-84272
Muliawan MJ, Karimirad M, Moan T (2013a) Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter. Renew Energy 50: 47-57. https://doi.org/10.1016/j.renene.2012.05.025
Muliawan MJ, Karimirad M, Gao Z, Moan T (2013b) Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes. Ocean Eng 65: 71-82. https://doi.org/10.1016/j.oceaneng.2013.03.002
M’zoughi F, Aboutalebi P, Garrido I, Garrido AJ, de la Sem M (2021) Complementary airflow control of oscillating water columns for floating offshore wind turbine stabilization. Mathematics 9: 1364. https://doi.org/10.3390/math9121364
M’zoughi F, Garrido I, Garrido AJ, de la Sem M (2023) Fuzzy airflow-based active structural control of integrated oscillating water columns for the enhancement of floating offshore wind turbine stabilization. Int J Energy Res 4938451. https://doi.org/10.1155/2023/4938451
Neisi A, Ghafari HM, Ghassemi H, Moan T, He G (2023) Power extraction and dynamic response of hybrid semi-submersible yaw-drive flap combination (SYFC). Renew Energy 218: 119315. https://doi.org/10.1016/j.renene.2023.119315
Nepomuceno E (2024) Simultaneous stabilization and wave energy harvesting for a floating offshore wind/wave platform. https://doi.org/10.17605/OSF.IO/AQEKD
Newman (2001) Wave effects on multiple bodies. Hydrodyn Ship Ocean Eng 3: 3-26
Olondriz J, Elorza I, Jugo J, Alonso-Quesada S, Pujana-Arrese A (2018) An advanced control technique for floating offshore wind turbines based on more compact barge platforms. Energies 11: 1187. https://doi.org/10.3390/en11051187
Onea F, Rusu E (2022) An evaluation of marine renewable energy resources complementarity in the Portuguese nearshore. J Mar Sci Eng 10(12): 1901. https://doi.org/10.3390/jmse10121901
Pérez-Collazo C, Greaves D, Iglesias G (2015) A review of combined wave and offshore wind energy. Renew Sust Energy Rev 42: 141-153. https://doi.org/10.1016/j.rser.2014.09.032
Pérez-Collazo C, Greaves D, Iglesias G (2018) A novel hybrid wind-wave energy converter for jacket-frame substructures. Energies 11: 637. https://doi.org/10.3390/en11030637
Petracca E, Faraggiana E, Ghigo A, Sirigu M, Bracco G, Mattiazzo G (2022) Design and techno-economic analysis of a novel hybrid offshore wind and wave energy system. Energies 15: 2739. https://doi.org/10.3390/en15082739
Ren N, Gao Z, Moan T, Wan L (2015) Long-term performance estimation of the Spar-Torus-Combination (STC) system with different survival modes. Ocean Eng 108: 716-728. https://doi.org/10.1016/j.oceaneng.2015.08.013
Ren Y, Venugopal V, Shi W (2022) Dynamic analysis of a multi-column TLP floating offshore wind turbine with tendon failure scenarios. Ocean Eng 245: 110472. https://doi.org/10.1016/j.oceaneng.2021.110472
Robertson A, Jonkman JM, Masciola M, Song H, Goupee A, Coulling A, Luan C (2014a) Definition of the semisubmersible floating system for Phase II of OC4. NREL/TP-5000-60601. Nat Renew Energy Lab. https://www.nrel.gov/docs/fy14osti/60601.pdf [Accessed 10 Jan 2024]
Robertson AN, Jonkman J, Vorpahl F, Popko W, Qvist J, Fr?yd L, Chen X, Azcona J, Uzungoglu E, Guedes Soares C, Luan C, Yutong H, Pengcheng F, Yde A, Larsen T, Nichols J, Buils R, Lei L, Nygard TA, Manolas D, Heege A, Vatne SR, Ormberg H, Duarte T, Godreau C, Hansen HF, Nielsen AW, Riber H, Cunff CL, Abele R, Beyer F, Yamaguchi A, Jung KJ, Shin H, Shi W, Park H, Alves M, Guérinel M (2014b) Offshore Code Comparison Collaboration Continuation within IEA wind task 30: Phase II Results regarding a floating semisubmersible wind system. Proc. ASME 2014 33rd Int. Conf. Ocean Offshore Arct. Eng., Jun 2014, San Francisco, CA, USA, OMAE2014-24040. https://doi.org/10.1115/OMAE2014-24040
Robertson AN, Wendt, F, Jonkman JM, Popko W, Dagher H, Gueydon S, Qvist J, Vittori, F, Azcona J, Uzunoglu E, Guedes Soares C, Harries R, Yde A, Galinos C, Hermans K, de Vaal JB, Bozonnet P, Buoy L, Bayati I, Bergua R, Galvan J, Mendikoa I, Sanchez CB, Shin H, Oh S, Molins C, Debruyne Y (2017) OC5 Project Phase II Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine. Energy Procedia. 137: 38-57
Roddier D, Cermelli C, Aubault A, Peiffer A (2017) Summary and conclusions of the full life-cycle of the WindFloat FOWT Prototype Project. Proc ASME 2017 36th Int Conf Ocean Offshore Arct Eng OMAE2017-62561. https://doi.org/10.1115/OMAE2017-62561
Rony JS, Chaitanya Sai K, Karmakar D (2023) Numerical investigation of offshore wind turbine combined with wave energy converter. Mar Syst Ocean Tech 18: 14-44. https://doi.org/10.1007/s40868-023-00127-4
Saeidtehrani S, Ferradosa TF, Rosa-Santos P, Taveira-Pinto F (2022) Review on floating wave-wind energy converter plants: Nonlinear dynamic assessment tools. Sust Energy Tech Assess 54: 102753. https://doi.org/10.1016/j.seta.2022.102753
Said HA, Costello SP, Ringwood JV (2023) On the complementarity of wave, tidal, wind and solar resources in Ireland. Proc EWTEC 2023 15th European Wave Tidal Energy Conf 15: 340. https://doi.org/10.36688/ewtec-2023-340
Salva??o N, Bentamy A, Guedes Soares C (2022) Developing a new wind dataset by blending satellite data and WRF model wind predictions. Renewable Energy, 198: 283-295
Santiago I, Liria P, Garnier R, Bald J, Leit?o JC, Ribeiro J (2023) Deliverable 3.3 Marine Dynamics Modelling. EMFF-2019-1.2.1.1-Environmental monitoring of ocean energy devices. Corporate deliverable of the SafeWAVE Project co-founded by the European Climate, Infrastructure and Environment Executive Agency (CINEA)
Sebastian B, Karmakar D, Rao M (2024) Coupled dynamic analysis of semi-submersible floating wind turbine integrated with oscillating water column WEC. J Ocean Eng Mar Energy. https://doi.org/10.1007/s40722-023-00313-x
Sergiienko NY, da Silva LSP, Bachynski-Polic EE, Cazzolato BS, Arjomandi M, Ding B (2022) Review of the scaling laws applied to floating offshore wind turbines. Renew Sust Energy Rev 162: 112477. https://doi.org/10.1016/j.rser.2022.112477
Shi W, Li J, Michailides C, Chen M, Wang S, Li X (2022) Dynamic load effects and power performance of an integrated wind-wave energy system utilizing an optimum torus wave energy converter. J Mar Sci Eng 10(12): 1985. https://doi.org/10.3390/jmse10121985
Si Y, Chen Z, Zeng W, Sun J, Zhang D, Ma X, Qian P (2021) The influence of power take-off control on the dynamic response and power output of combined semi-submersible floating wind turbine and point-absorber wave energy converters. Ocean Eng 227: 108835. https://doi.org/10.1016/j.oceaneng.2021.108835
Silva D, Martinho P, Guedes Soares C (2018) Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast. Renewable Energy, 127(4): 1067-1075
Silva HJSL (2019) Techno-economic assessment of 20MW floating wind turbines. MSc thesis, IST-ULisboa. https://fenix.tecnico.ulisboa.pt/downloadFile/563345090418611/HumbertoSilva_Thesis.pdf [Accessed 10 Jan 2024]
da Silva LSP, Sergiienko NY, Cazzolato B, Ding B (2022) Dynamics of hybrid offshore Renewable Energy platforms: Heaving point absorbers connected to a semi-submersible Floating Offshore Wind Turbine. Renew Energy 199: 1424-1439. https://doi.org/10.1016/j.renene.2022.09.014
Silva de Souza CE, Berthelsen PA, Eliassen L, Bachynski EE, Engebretsen E, Haslum H (2021) Definition of the INO WINDMOOR 12 MW case base floating wind turbine. OC2020 A-044. SINTEF Ocean AS
Simos AN, do Carmo LHS, Camargo EC (2018) On the use of the white-noise approximation for modelling the slow-drifts of a FOWT: An example using FAST. Proc ASME 2018 37th Int Conf Ocean Offshore Arct Eng OMAE2018-77222. https://doi.org/10.1115/OMAE2018-77222
Skaare B (2017) Development of the Hywind concept. Proc ASME 2017 36th Int Conf Ocean Offshore Arct Eng OMAE2017-62710. https://doi.org/10.1115/OMAE2017-62710
Skene DM, Sergiienko N, Ding B, Cazzolato B (2021) The prospect of combining a point absorber wave energy converter with a floating offshore wind turbine. Energies 14: 7385. https://doi.org/10.3390/en14217385
Soulard T, Babarit A (2012) Numerical assessment of the mean power production of a combined wind and wave energy platform. Proc ASME 2012 31st Int Conf Ocean Offshore Arct Eng OMAE2012-83606. https://doi.org/10.1115/OMAE2012-83606