Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. Journal of Computational Physics, 231(21): 7057-7075. https://doi.org/10.1016/j.jcp.2012.05.005
Baba E (1969) A new component of viscous resistance of ships. Journal of the Society of Naval Architects of Japan, 1969(125): 23-34. https://doi.org/10.2534/jjasnaoe1968.1969.23
Colagrossi A (2001) Numerical studies of wave breaking compared to experimental observations. 2001 4th-Numerical Towing Tank Symposium (NuTTS), Hamburg [2023-12-09]. https://cir.nii.ac.jp/crid/1571698600050648960
Dong RR, Katz J, Huang TT (1997) On the structure of bow waves on a ship model. Journal of Fluid Mechanics, 346: 77-115. https://doi.org/10.1017/S0022112097005946
Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3): 375-389. https://doi.org/10.1093/mnras/181.3.375
Hirt CW, Shannon JP (1968) Free-surface stress conditions for incompressible-flow calculations. Journal of Computational Physics, 2(4): 403-411. https://doi.org/10.1016/0021-9991(68)90045-4
Hu C, Kashiwagi M (2004) A CIP-based method for numerical simulations of violent free-surface flows. Journal of Marine Science and Technology, 9(4): 143-157. https://doi.org/10.1007/s00773-004-0180-z
Kayo Y, Takekuma K (1981) On the free-surface shear flow related to bow wave-breaking of full ship models. Journal of the Society of Naval Architects of Japan, 1981(149): 11-20. https://doi.org/10.2534/jjasnaoe1968.1981.11
Landrini M, Colagrossi A, Greco M, Tulin MP (2012) The fluid mechanics of splashing bow waves on ships: A hybrid BEM-SPH analysis. Ocean Engineering, 53: 111-127. https://doi.org/10.1016/j.oceaneng.2012.06.027
Liu GR, Liu MB (2003) Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific
Liu MB, Liu GR (2010) Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments. Archives of Computational Methods in Engineering, 17(1): 25-76. https://doi.org/10.1007/s11831-010-9040-7
Liu M, Zhang Z (2019) Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Science China Physics, Mechanics & Astronomy, 62(8): 984701. https://doi.org/10.1007/s11433-018-9357-0
Liu W, Wang WT, Qiu G, Wan DC, Stern F (2022) KCS Unsteady bow wave breaking experiments for physics and CFD validation//Proceedings of the 34th Symposium on Naval Hydrodynamics (SNH)
Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. [2023-06-17]. https://articles.adsabs.harvard.edu//full/1977AJ.....82.1013L/0001013.000.html
Lyu HG, Sun PN, Huang XT, Peng YX, Liu NN, Zhang X, Xu Y, Zhang AM (2023) SPHydro: Promoting smoothed particle hydrodynamics method toward extensive applications in ocean engineering. Physics of Fluids, 35(1): 017116. https://doi.org/10.1063/5.0133782
Marrone S, Bouscasse B, Colagrossi A, Antuono M (2012) Study of ship wave breaking patterns using 3D parallel SPH simulations. Computers & Fluids, 69: 54-66. https://doi.org/10.1016/j.compfluid.2012.08.008
Marrone S, Colagrossi A, Antuono M, Lugni C, Tulin MP (2011) A 2D+t SPH model to study the breaking wave pattern generated by fast ships. Journal of Fluids and Structures, 27(8): 1199-1215. https://doi.org/10.1016/j.jfluidstructs.2011.08.003
Moraga FJ, Carrica PM, Drew DA, Lahey RT (2008) A sub-grid air entrainment model for breaking bow waves and naval surface ships. Computers & Fluids, 37(3): 281-298. https://doi.org/10.1016/j.compfluid.2007.06.003
Olivieri A, Pistani F, Wilson R, Campana EF, Stern F (2007) Scars and vortices induced by ship bow and shoulder wave breaking. Journal of Fluids Engineering, 129(11): 1445-1459. https://doi.org/10.1115/1.2786490
Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1): 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
Shao J, Liu M, Yang X, Cheng L (2012) Improved smoothed particle hydrodynamics with rans for free-surface flow problems. International Journal of Computational Methods, 09. https://doi.org/10.1142/S0219876212400014
Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM national conference. New York, NY, USA: Association for Computing Machinery: 517-524 [2023-06-15]. https://doi.org/10.1145/800186.810616
Sun PN (2018) Study on SPH method for the simulation of object-free surface interactions. Harbin Engineering University. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=1018291709.nh&dbname=CDFDLAST2019&dbcode=CDFD&v=MDM4NzVrcVdBMEZyQ1VSN3VlWmVSbUZpamxVTHZBVkYyNkZyR3hIOWJNcHBFYlBJUitmbnM0eVJZYW16MTFQSGI=
Sun PN, Colagrossi A, Le Touzé D, Zhang AM (2019a) Extension of the δ-plus-SPH model for simulating vortex-induced-vibration problems. Journal of Fluids and Structures, 90: 19-42. https://doi.org/10.1016/j.jfluidstructs.2019.06.004
Sun PN, Le Touzé D, Oger G, Zhang AM (2021) An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Engineering, 221: 108552. https://doi.org/10.1016/j.oceaneng.2020.108552
Sun PN, Le Touzé D, Zhang AM (2019b) Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR. Engineering Analysis with Boundary Elements, 104: 240-258. https://doi.org/10.1016/j.enganabound.2019.03.033
Sun PN, Zhang AM, Marrone S, Ming F (2018) An accurate and efficient SPH modeling of the water entry of circular cylinders. Applied Ocean Research, 72: 60-75. https://doi.org/10.1016/j.apor.2018.01.004
Wan DC (2017) Breaking wave simulations of high-speed surface combatant using OpenFOAM. [2023-10-23]. https://www.semanticscholar.org/paper/Breaking-Wave-Simulations-of-High-speed-Surface-Wan/eebc341ca59d86d804d831d1ac6dfdb895279dd2
Wang JH, Wan DC (2019) Numerical and experimental study of the bow wave breaking of high-speed KCS model. Proceedings of the 30th National Symposium on Hydrodynamics and the 15th National Conference on Hydrodynamics (Volume I). China Ocean Press: 540-545. https://doi.org/10.26914/c.cnkihy.2019.013217
Wang JH, Ren Z, Wan DC (2020a) Study of a container ship with breaking waves at high Froude number using URANS and DDES methods[J]. Journal of Ship Research, 64(4): 346-356. https://doi.org/10.5957/JOSR.09180081
Wang JH, Wang WT, Wan DC (2023) Scale effects on bow wave breaking of KCS ship model: Insights from DDES investigations [J]. Journal of Hydrodynamics, 35(4): 668-678. https://doi.org/10.1007/s42241-023-0056-5
Wang WT, QIU G, Wang J, Wan DC (2020b) Experimental and computational investigations on KCS wave breaking with trim and sinkage variation. Proceedings of the Fourteenth (2020) ISOPE Pacific-Asia Offshore Mechanics Symposium. Dalian, China, 22-25
Wilson RV, Carrica PM, Stern F (2007) Simulation of ship breaking bow waves and induced vortices and scars. International Journal for Numerical Methods in Fluids, 54(4): 419-451. https://doi.org/10.1002/fld.1406
Xu Y, Sun PN, Huang XT, Marrone S, Geng LM (2023) Numerical study of the splashing wave induced by a seaplane using mesh-based and particle-based methods. Theoretical and Applied Mechanics Letters, 13(5): 100463. https://doi.org/10.1016/j.taml.2023.100463
Yu AZ (2020) Numerical simulation of ship bow wave breaking under high speeds. Shanghai Jiao Tong University. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkOTSE1G1uB0_um8HHdEYmZhIVNsnAlEeF5NT54Kh0dCEr0dmFXA-jMs5063WXmk5c&uniplatform=NZKPT
Yu AZ, Wan DC (2020) Numerical study of bow wave breaking and vorticity of KCS under high speeds. Chinese Journal of Hydrodynamics, 35: 122-132. https://doi.org/10.16076/j.cnki.cjhd.2020.01.018
Zhang AM, Li SM, Cui P, Li S, Liu YL (2023) A unified theory for bubble dynamics. Physics of Fluids, 35(3): 033323. https://doi.org/10.1063/5.0145415