|Table of Contents|

Citation:
 Bin Liu,Yutong Fu,Pengfei Wen.Hcable for Time-Lapse Seismic Monitoring of Marine Carbon Capture and Storage[J].Journal of Marine Science and Application,2024,(3):628-633.[doi:10.1007/s11804-024-00438-x]
Click and Copy

Hcable for Time-Lapse Seismic Monitoring of Marine Carbon Capture and Storage

Info

Title:
Hcable for Time-Lapse Seismic Monitoring of Marine Carbon Capture and Storage
Author(s):
Bin Liu1 Yutong Fu2 Pengfei Wen1
Affilations:
Author(s):
Bin Liu1 Yutong Fu2 Pengfei Wen1
1. Guangzhou Marine Geological Survey, Guangzhou, 511458, China;
2. Sanya Institute of South China Sea Geology, Guangzhou Marine Geological Survey, China Geological Survey, Sanya, 572025, China
Keywords:
Carbon capture and storage|Hcable|Seismic monitoring|High resolution image|High frequency seismic source
分类号:
-
DOI:
10.1007/s11804-024-00438-x
Abstract:
To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage (CCS) project. Monitoring can be done using many well-established techniques from various fields, and the seismic method proves to be the crucial one. This method is widely used to determine the CO2 distribution, image the plume development, and quantitatively estimate the concentration. Because both the CO2 distribution and the potential migration pathway can be spatially small scale, high resolution for seismic imaging is demanded. However, obtaining a high-resolution image of a subsurface structure in marine settings is difficult. Herein, we introduce the novel Hcable (Harrow-like cable system) technique, which may be applied to offshore CCS monitoring. This technique uses a high-frequency source (the dominant frequency>100 Hz) to generate seismic waves and a combination of a long cable and several short streamers to receive seismic waves. Ultrahigh-frequency seismic images are achieved through the processing of Hcable seismic data. Hcable is then applied in a case study to demonstrate its detailed characterization for small-scale structures. This work reveals that Hcable is a promising tool for time-lapse seismic monitoring of oceanic CCS.

References:

Ajo-Franklin JB, Peterson J, Doetsch J, Daley TM (2013) High-resolution characterization of a CO2 plume using crosswell seismic tomography: Cranfield, MS, USA. International Journal of Greenhouse Gas Control 18: 497-509. https://doi.org/10.1016/j.ijggc.2012.12.018
Arts R, Chadwick A, Eiken O, Thibeau S, Nooner S (2008) Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner offshore Norway. First Break 26(1): 65-72. https://doi.org/10.3997/1365-2397.26.1115.27807
Arts R, Eiken O, Chadwick RA, Zweigel P, Van Der Meer L, Zinszner B (2004) Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy 29: 1383-1393. https://doi.org/10.1016/j.energy.2004.03.072
Blackford J, Stahl H, Bull J M, Bergès BJP, Cevatoglu M, Lichtschlag A, Connelly D, James RH, Kita J, Long D, Naylor M, Shitashima K, Smith D, Taylor P, Wright I, Akhurst M, Chen B, Gernon TM, Hauton C, Widdicombe S (2014) Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nature Climate Change 4(11): 1011-1016. https://doi.org/10.1038/nclimate2381
Chadwick RA, Arts R, Eiken O, Kirby GA, Lindeberg E, Zweigel P (2004) 4D seismic imaging of an injected CO2 plume at the sleipner field, central North Sea. Geological Society Memoir 29(1): 311-320. https://doi.org/10.1144/GSL.MEM.2004.029.01.29
Chadwick RA, Marchant BP, Williams GA (2014) CO2 storage monitoring: Leakage detection and measurement in subsurface volumes from 3D seismic data at sleipner. Energy Procedia 63: 4224-4239. https://doi.org/10.1016/j.egypro.2014.11.458
Cheraghi S, White DJ, Draganov D, Bellefleur G, Craven JA, Roberts B (2017) Passive seismic reflection interferometry: A case study from the aquistore CO2 storage site, Saskatchewan, Canada. Geophysics 82(3): B79-B93. https://doi.org/10.1190/GEO2016-0370.1
Cowton LR, Neufeld JA, White NJ, Bickle MJ, White JC, Chadwick RA (2016) An inverse method for estimating thickness and volume with time of a thin CO2-filled layer at the Sleipner Field, North Sea. Journal of Geophysical Research: Solid Earth 121(7): 5068-5085. https://doi.org/10.1002/2016JB012895
Furre AK, Eiken O (2014) Dual sensor streamer technology used in Sleipner CO2 injection monitoring. Geophysical Prospecting 62(5): 1075-1088. https://doi.org/10.1111/1365-2478.12120
Furre AK, Eiken O, Alnes H, Vevatne JN, Ki?r AF (2017) 20 years of monitoring CO2-injection at sleipner. Energy Procedia 114: 3916-3926. https://doi.org/10.1016/j.egypro.2017.03.1523
Ghosh R, Sen MK, Vedanti N (2015) Quantitative interpretation of CO2 plume from Sleipner (North Sea), using post-stack inversion and rock physics modeling. International Journal of Greenhouse Gas Control 32: 147-158. https://doi.org/10.1016/j.ijggc.2014.11.002
Harris K, White D, Melanson D, Samson C, Daley TM (2016) Feasibility of time-lapse VSP monitoring at the Aquistore CO2 storage site using a distributed acoustic sensing system. International Journal of Greenhouse Gas Control 50: 248-260. https://doi.org/10.1016/j.ijggc.2016.04.016
Jedari-Eyvazi F, Bayrakci G, Minshull TA, Bull JM, Henstock TJ, Macdonald C, Robinson AH (2023) Seismic characterization of a fluid escape structure in the North Sea: the Scanner Pockmark complex area. Geophysical Journal International 234(1): 597-619. https://doi.org/10.1093/gji/ggad078
Li JH, Yu FL, Niu XW, Zhou T, Zhang YX, Li WL (2023) Advances and future development of monitoring technologies for marine carbon storage. Advance in Earth Science 38(11): 1121-1144. DOI: 10.11867/j.issn.1001-8166.2023.071
Liang J, Zhang W, Lu JA, Wei JG, Kuang ZG, He Y (2019) Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: Insights from site GMGS5-W9-2018. Marine Geology 418: 106042. https://doi.org/10.1016/j.margeo.2019.106042
Liu B, Xu YX, Xue H, Wen PF, Meng DJ (2022) Seismic imaging of a seepage gas hydrate system with a harrow-like acquisition geometry. Acta Geophys 71: 1717-1728. https://doi.org/10.1007/s11600-022-00998-y
Long AS (2004) The revolution in seismic resolution: High density 3D spatial sampling developments and results. ASEG Extended Abstracts 2004(1): 1-4. DOI:https://doi.org/10.1071/ASEG2004ab094
Marsset B, Menut E, Ker S, Thomas Y, Regnault JP, Leon P, Martinossi H, Artzner L, Chenot D, Dentrecolas S, Spychalski B, Mellier G, Sultan N (2014) Deep-towed high resolution multichannel seismic imaging. Deep-Sea Research Part I: Oceanographic Research Papers 93: 83-90. https://doi.org/10.1016/j.dsr.2014.07.013
McGee TM (2000) A single-channel seismic reflection method for quantifying lateral variations in BSR reflectivity. Marine Geology 164(1-2): 29-35. https://doi.org/10.1016/S0025-3227(99)00124-3A
Petersen CJ, Bünz S, Hustoft S, Mienert J, Klaeschen D (2010) High-resolution P-Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic sediment drift. Marine and Petroleum Geology 27(9): 1981-1994. https://doi.org/10.1016/j.marpetgeo.2010.06.006
Pevzner R, Isaenkov R, Yavuz S, Yurikov A, Tertyshnikov K, Shashkin P, Gurevich B, Correa J, Glubokovskikh S, Wood T, Freifeld B, Barraclough P (2021) Seismic monitoring of a small CO2 injection using a multi-well DAS array: Operations and initial results of stage 3 of the CO2 CRC Otway project. International Journal of Greenhouse Gas Control 110: 103437. https://doi.org/10.1016/j.ijggc.2021.103437
Riedel M (2007) 4D seismic time-lapse monitoring of an active cold vent, northern Cascadia margin. Mar Geophys Res 28: 355-371. https://doi.org/10.1007/s11001-007-9037-2
Ringrose P, Atbi M, Mason D, Espinassous M, Myhrer ?, Iding M, Mathieson A, Wright I (2009) Plume development around well KB-502 at the In Salah CO2 storage site. First Break 27(1): 85-89. https://doi.org/10.3997/1365-2397.27.1295.28744
Robinson AH, Callow B, B?ttner C, Yilo N, Provenzano G, Falcon-Suarez IH, Marín-Moreno H, Lichtschlag A, Bayrakci G, Gehrmann R, Parkes L, Roche B, Saleem U, Schramm B, Waage M, Lavayssière A, Li J, Jedari-Eyvazi F, Sahoo S, Reinardy B (2021) Multiscale characterisation of chimneys/pipes: Fluid escape structures within sedimentary basins. International Journal of Greenhouse Gas Control 106. https://doi.org/10.1016/j.ijggc.2020.103245
Schramm B, Berndt C, Dannowski A, B?ttner C, Karstens J, Elger J (2021) Seismic imaging of an active fluid conduit below Scanner Pockmark, Central North Sea. Marine and Petroleum Geology 133. https://doi.org/10.1016/j.marpetgeo.2021.105302
Trautz R, Daley T, Miller D, Robertson M, Koperna G, Riestenberg D (2020) Geophysical monitoring using active seismic techniques at the Citronelle Alabama CO2 storage demonstration site. International Journal of Greenhouse Gas Control 99. https://doi.org/10.1016/j.ijggc.2020.103084
Wen PF, Liu B, Xu YX, Xue HYZ, Li Y, Meng DJ, Lu YQ (2021) Novel seismic exploration technique targeting fine characterization of marine gas hydrates: seismic exploration with a harrow-like acquisition geometry. Progress in Geophysics 36(5): 2215-2221. DOI: 10.6038/pg2021EE0279
Widmaier M, T?nnessen R, Oukili J, Roalkvam C (2020) Recent advances with wide-tow multi-sources in marine seismic streamer acquisition and imaging. First Break 38(12): 75-79. https://doi.org/10.3997/1365-2397.fb2020093
Williams G, Chadwick A (2012) Quantitative seismic analysis of a thin layer of CO2 in the Sleipner injection plume. Geophysics 77(6): R245-R256. https://doi.org/10.1190/geo2011-0449.1
Wood WT, Hart PE, Hutchinson DR, Dutta N, Snyder F, Coffin RB, Gettrust JF (2008) Gas and gas hydrate distribution around seafloor seeps in Mississippi Canyon, Northern Gulf of Mexico, using multi-resolution seismic imagery. Marine and Petroleum Geology 25(9): 952-959. https://doi.org/10.1016/j.marpetgeo.2008.01.015
Yan H, Dupuy B, Romdhane A, Arntsen B (2019) CO2 saturation estimates at Sleipner (North Sea) from seismic tomography and rock physics inversion. Geophysical Prospecting 67(4): 1055-1071. https://doi.org/10.1111/1365-2478.12693

Memo

Memo:
Received date:2023-12-17;Accepted date:2024-1-11。
Foundation item:Supported by the project of Sanya Yazhou Bay Science and Technology City (Grant No: SCKJ-JYRC-2022-14).
Corresponding author:Pengfei Wen,E-mail:wenpf2016@sina.com
Last Update: 2024-09-29