|Table of Contents|

Citation:
 Jinglian Jiang,Pengchun Li,Changyou Xia,et al.Basalt Petrology, Water Chemistry, and Their Impact on the CO2 Mineralization Simulation at Leizhou Peninsula Sites, Southern China[J].Journal of Marine Science and Application,2024,(3):583-598.[doi:10.1007/s11804-024-00510-6]
Click and Copy

Basalt Petrology, Water Chemistry, and Their Impact on the CO2 Mineralization Simulation at Leizhou Peninsula Sites, Southern China

Info

Title:
Basalt Petrology, Water Chemistry, and Their Impact on the CO2 Mineralization Simulation at Leizhou Peninsula Sites, Southern China
Author(s):
Jinglian Jiang12 Pengchun Li13 Changyou Xia3 Jianxin Cai1 Muxin Liu3 Yongbin Jin1 Xi Liang34
Affilations:
Author(s):
Jinglian Jiang12 Pengchun Li13 Changyou Xia3 Jianxin Cai1 Muxin Liu3 Yongbin Jin1 Xi Liang34
1. Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China;
2. University of Chinese Academy of Sciences, Beijing, 100049, China;
3. UK-China (Guangdong) CCUS Centre, Guangzhou, 510440, China;
4. University College London, London, WC1E 6BT, UK
Keywords:
CO2 mineralization|Mineral carbonation|Basalt carbonation|Geochemistry simulation|Leizhou Peninsula
分类号:
-
DOI:
10.1007/s11804-024-00510-6
Abstract:
Mineral carbonation, which precipitates dissolved carbon dioxide (CO2) as carbonate minerals in basaltic groundwater environments, is a potential technique for negative emissions. The Leizhou Peninsula in southwest Guangdong province has extensive basalt, indicating a promising potential for CO2 storage through rapid mineralization. However, understanding of the basic geological setting, potential, and mechanisms of CO2 mineralization in the basalts of the Leizhou Peninsula is still limited. The mineralization processes associated with CO2 storage at two candidate sites in the area are investigated in this paper: Yongshi Farm and Tianyang Basin (of the dried maar lake). Petrography, rock geochemistry, basalt petrophysical properties, and groundwater hydrochemistry analyses are included in the study. Numerical simulation is used to examine the reaction process and its effects. The results show that basalts in the study areas mainly comprise plagioclase, pyroxene, and Fe-Ti oxides, revealing a total volume fraction exceeding 85%. Additionally, small amounts of quartz and fayalite are available, with volume fractions of 5.1% and 1.0%, respectively. The basalts are rich in divalent metal cations, which can form carbonate minerals, with an average of approximately 6.2 moles of metal cations per 1 kg of rock. The groundwater samples have a pH of 7.5-8.2 and are dominated by the Mg-Ca-HCO3 type. The basalts demonstrate a porosity range of 10.9% to 28.8%, with over 70% of interconnected pores. A 20-year geochemical simulation revealed that CO2 injection dissolves primary minerals, including anorthite, albite, and diopside, while CO2 mineralization dissolves precipitation secondary minerals, such as calcite, siderite, and dolomite. Furthermore, a substantial rise in pH from 7.6 to 10.6 is observed in the vicinity of the injected well, accompanied by a slight reduction in porosity from 20% to 19.8%. Additionally, 36.8% of the injected CO2 underwent complete mineralization within five years, revealing an increasing percentage of 66.1% if the experimental period is extended to 20 years. The presence of abundant divalent metal cations in basalts and water-bearing permeable rocks in the Leizhou Peninsula supports the potential for mineral carbonation in basalts, as indicated by the geochemical simulation results. Additional research is necessary to identify the factors that influence the CO2 mineralization, storage, and sensitivity analysis of basalt in the Leizhou Peninsula.

References:

Alfredsson HA, Oelkers EH, Hardarsson BS, Franzson H, Gunnlaugsson E, Gislason SR (2013) The geology and water chemistry of the Hellisheidi, SW-Iceland carbon storage site. International Journal of Greenhouse Gas Control 12: 399-418. https://doi.org/10.1016/j.ijggc.2012.11.019
Aradóttir ESP, Sigurdardóttir H, Sigfússon B, Gunnlaugsson E (2011) CarbFix: a CCS pilot project imitating and accelerating natural CO2 sequestration. Greenhouse Gases: Science and Technology 1(2): 105-118. https://doi.org/10.1002/ghg.18
Aradóttir ESP, Sonnenthal EL, Bj?rnsson G, Jónsson H (2012) Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field. Iceland International Journal of Greenhouse Gas Control 9: 24-40. https://doi.org/10.1016/j.ijggc.2012.02.006
Bachu S (2015) Review of CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control 40: 188-202. https://doi.org/10.1016/j.ijggc.2015.01.007
Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Conversion and Management 44(20): 3151-3175. https://doi.org/10.1016/S0196-8904(03)00101-8
Bas MJL, Maitre RWL, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
Benson SM, Cole DR (2008) CO2 sequestration in deep sedimentary formations. Elements 4(5): 325-331. https://doi.org/10.2113/gselements.4.5.325
Bryant E (1997) Climate process and change. Cambridge University Press, Cambridge, United Kingdom, 20-25. https://doi.org/10.1017/CBO9781139166751
Chen X, Chen L, Chen Y, Zeng G, Liu J (2014) Distribution summary of Cenozoic basalts in central and eastern China. Geological Journal of China Universities 20(4): 507. https://doi.org/10.16108/j.issn1006-7493.2014.04.002 (in Chinese)
Franzson H, Zierenberg R, Schiffman P (2008) Chemical transport in geothermal systems in Iceland: Evidence from hydrothermal alteration. Journal of Volcanology and Geothermal Research 173(3): 217-229. https://doi.org/10.1016/j.jvolgeores.2008.01.027
Galeczka I, Wolff-Boenisch D, Oelkers EH, Gislason SR (2014) An experimental study of basaltic glass-H2O-CO2 interaction at 22 and 50℃: Implications for subsurface storage of CO2. Geochimica et Cosmochimica Acta 126: 123-145. https://doi.org/10.1016/j.gca.2013.10.044
Gislason SR, Broecker WS, Gunnlaugsson E, et al. (2014) Rapid solubility and mineral storage of CO2 in basalt. Energy Procedia 63: 4561-4574. https://doi.org/10.1016/j.egypro.2014.11.489
Gislason SR, Wolff-Boenisch D, Stefansson A, Oelkers EH, Gunnlaugsson E, Sigurdardottir H, Sigfusson B, Broecker WS, Matter JM, Stute M, Axelsson G, Fridriksson T (2010) Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. International Journal of Greenhouse Gas Control 4(3): 537-545. https://doi.org/10.1016/j.ijggc.2009.11.013
Goldberg DS, Takahashi T, Slagle AL (2008) Carbon dioxide sequestration in deep-sea basalt. Proceedings of the National Academy of Sciences 105(29): 9920-9925. https://doi.org/10.1073/pnas.0804397105
Gysi AP, Stefánsson A (2011) CO2-water-basalt interaction. Numerical simulation of low temperature CO2 sequestration into basalts. Geochimica et Cosmochimica Acta 75(17): 4728-4751. https://doi.org/10.1016/j.gca.2011.05.037
Han J, Xiong X, Zhu Z (2009) Geochemistry of Late-Cenozoic basalts from the Leiqiong area: The origin of the EM2 and contribution from sub-continental lithosphere mantle. Acta Petrological Sinica 25(12): 3208-3220. https://doi.org/10.1007/BF02943552 (in Chinese)
Hansen LD, Dipple GM, Gordon TM, Kellett DA (2005) Carbonated serpentinite (listwanite) at Atlin, British Columbia: A geological analogue to carbon dioxide sequestration. The Canadian Mineralogist 43(1): 225-239. https://doi.org/10.2113/gscanmin.43.1.225
He H, Tian C, Jin G, Han K (2020) Evaluating the CO2 geological storage suitability of coal-bearing sedimentary basins in China. Environmental Monitoring and Assessment 192(7): 462. https://doi.org/10.1007/s10661-020-08424-w
Ho K, Chen J, Juang W (2000) Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China. Journal of Asian Earth Sciences 18(3): 307-324. https://doi.org/10.1016/S1367-9120(99)00059-0
Huang Z, Cai F (1994) A new approach to the Quaternary volcanicity in the Leiqiong area. Tropical geography 1: 1-10. https://doi.org/10.13284/j.cnki.rddl.000020 (in Chinese)
Huang Z, Cai F, Han Z, Chen J, Zong Y, Lin X (1993) The Quaternary Volcano of the Leiqiong area. Science Press, Beijing, China, 128-135. (in Chinese)
Jia B, Tsau J-S, Barati R (2019) A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 236: 404-427. https://doi.org/10.1016/j.fuel.2018.08.103
Kong Z (2004) Hydrogeological property and laws of water abundance of the volcanic rocks in the Leizhou Peninsula. Tropical Geography 2: 136-139. https://doi.org/10.13284/j.cnki.rddl.000812 (in Chinese)
Li P, Jiang J, Cheng J, Zhao M (2023) Assessment of carbon dioxide mineralization sequestration potential of volcanic rocks in Leizhou Peninsula, Guangdong province, China. Geological Journal of China Universities 29(1): 76. https://doi.org/10.16108/j.issn1006-7493.2022078 (in Chinese)
Li W, Xu J, Jia L, Ma B, Chen J (2022) Research progress on key technologies of CO2 storage in basalts. Hydrogeology & Engineering Geology 49(3): 164-173. https://doi.org/10.16030/j.cnki.issn.1000-3665.202107049 (in Chinese)
Li X, Chang C, Yu Q (2013) Model of basalt dissolution rate under CO2 mineral sequestration conditions. Geoscience 27(6): 1477 (in Chinese)
Li X, Zhang Z, Li H, Zhang J, Bai X (2023) 40Ar/39Ar age of Quaternary volcanic rocks from the midwest of the Leizhou Peninsula, and their geologic significance. Journal of Geomechanics 29(4): 512-521. https://doi.org/10.12090/j.issn.1000-6616-2023098 (in Chinese)
Lu H, Lin C, Lin W, Liou T, Chen W, Chang P (2011) A natural analogue for CO2 mineral sequestration in Miocene basalt in the Kuanhsi-Chutung area, Northwestern Taiwan. International Journal of Greenhouse Gas Control 5(5): 1329-1338. https://doi.org/10.1016/j.ijggc.2011.05.037
Lu Y, Tang C, Chen J, Chen J (2015) Groundwater Recharge and Hydrogeochemical Evolution in Leizhou Peninsula, China. Journal of Chemistry 2015: 1-12. https://doi.org/10.1155/2015/427579
Matter JM, Broecker WS, Stute M, Gislason SR, Oelkers EH, Stefánsson A, Wolff-Boenisch D, Gunnlaugsson E, Axelsson G, Bj?rnsson G (2009) Permanent carbon dioxide storage into basalt: The CarbFix Pilot Project, Iceland. Energy Procedia 1(1): 3641-3646. https://doi.org/10.1016/j.egypro.2009.02.160
McDonough WF, Sun SS (1995) The composition of the Earth. Chemical Geology 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
McGrail BP, Schaef HT, Ho AM, Chien Y-J, Dooley JJ, Davidson CL (2006) Potential for carbon dioxide sequestration in flood basalts. Journal of Geophysical Research: Solid Earth 111(B12): B12201. https://doi.org/10.1029/2005JB004169
Oelkers EH, Cole DR (2008) Carbon dioxide sequestration: A solution to a global problem. Elements 4(5): 305-310. https://doi.org/10.2113/gselements.4.5.305
Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4(5): 333-337. https://doi.org/10.2113/gselements.4.5.333
Pacala S, Al-Kaisi M, Barteau M, et al. (2018) Negative emissions technologies and reliable sequestration: a research agenda. National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA. https://doi.org/10.17226/25259
Pham VTH, Lu P, Aagaard P, Zhu C, Hellevang H (2011) On the potential of CO2-water-rock interactions for CO2 storage using a modified kinetic model. International Journal of Greenhouse Gas Control 5(4): 1002-1015. https://doi.org/10.1016/j.ijggc.2010.12.002
Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union 25(6): 914-928. https://doi.org/10.1029/TR025i006p00914
Rutqvist J, Birkholzer J, Cappa F, Tsang C-F (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conversion and Management 48(6): 1798-1807. https://doi.org/10.1016/j.enconman.2007.01.021
Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM (2014) A review of mineral carbonation technologies to sequester CO2. Chemical Society Reviews 43(23): 8049-8080. https://doi.org/10.1039/C4CS00035H
Seisenbayev N, Absalyamova M, Alibekova A, Leea W (2023) Reactive transport modeling and sensitivity analysis of CO2-rock-brine interactions at Ebeity Reservoir, West Kazakhstan. Sustainability 15(19): 14434. https://doi.org/10.3390/su151914434
Sn?bj?rnsdóttir Só, Sigfússon B, Marieni C, Goldberg D, Gislason SR, Oelkers EH (2020) Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment 1(2): 2. https://doi.org/10.1038/s43017-019-0011-8
Sn?bj?rnsdóttir Só, Wiese F, Fridriksson T, ármansson H, Einarsson GM, Gislason SR (2014) CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges. Energy Procedia 63: 4585-4600. https://doi.org/10.1016/j.egypro.2014.11.491
Sui S, Wang W (2003) Age exploration of the basal core from hole TY2 of the ancient Maar Lake in Tianyang, Guangdong province, China. Quaternary Science 23(2): 232 (in Chinese)
Tu K, Flower MFJ, Carlson RW, Zhang M, Xie G (1991) Sr, Nd, and Pb isotopic compositions of Hainan basalts (south China): Implications for a subcontinental lithosphere Dupal source. Geology 19(6): 567-569. https://doi.org/10.1130/0091-7613
White SK, Spane FA, Schaef HT, Miller QRS, White MD, Horner JA, McGrail BP (2020) Quantification of CO2 Mineralization at the Wallula Basalt Pilot Project. Environmental Science & Technology 54(22): 14609-14616. https://doi.org/10.1021/acs.est.0c05142
Woodall CM, McQueen N, Pilorgé H, Wilcox J (2019) Utilization of mineral carbonation products: current state and potential. Greenhouse Gases: Science and Technology 9(6): 1096-1113. https://doi.org/10.1002/ghg.1940
Wu J, Wang Y, Hu Q, Ke X, Cheng J, Tang Z (2022) Hydrochemical characteristics and genetic analysis of groundwater in Leizhou Peninsula. Safety and Environmental Engineering 29(1): 145-153+162. https://doi.org/10.13578/j.cnki.issn.1671-1556.20210311 (in Chinese)
Yang M, Xie X, Chen J (2006) Sedimentary evidence and paleoenvironmental significance of the wetland of Tianyang Maar Lake, Leizhou Peninsula. Marine Geology Letters (7): 726-29+37. (in Chinese)
Yang S, Zheng Z, Zong Y, Li J, Huang K (2012) Characteristics and environmental significance of magnetic susceptibility of the Tianyang Maar Lake since Middle Pleistocene. Acta Scientia rum Naturalism Universitatis Sunya Seni 51(3): 121-127. (in Chinese)
Yao J, Zhou X, Li J, Dai W, Kang X (2007) Hydrogeochemical characteristics and evolution simulation of groundwater in basalts on the Leizhou Peninsula, Guangdong, China. Geological Bulletin of China 26(3): 327-334. (in Chinese)
Yu J, O’Reilly SY (2001) Iron-aluminium garnet megacrystals and parent magmatism in the Yingfengling Basalt, Leizhou Peninsula, China. Science Bulletin 46(6): 492-497. (in Chinese)
Zhang H, Wu Y, Luo W, Chen W, Liu H (2020) Hydrogeochemical investigations of groundwater in the Lingbei area, Leizhou Peninsula. Environmental Science 41(11): 4924-4935. https://doi.org/10.13227/j.hjkx.202002187
Zhang X, Ranjith PG (2019) Experimental investigation of effects of CO2 injection on enhanced methane recovery in coal seam reservoirs. Journal of CO2 Utilization 33: 394-404. https://doi.org/10.1016/j.jcou.2019.06.019

Memo

Memo:
Received date:2024-1-14;Accepted date:2024-4-29。
Foundation item:This study was funded by the National Natural Science Foundation of China (U1901217), Guangdong Basic and Applied Basic Research Foundation (2021A1515011298), and the National Key R&D Program of China (2021YFF0501202), and Special Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences (SCSIO2023QY06).
Corresponding author:Pengchun Li,E-mail:lypengchun@scsio.ac.cn
Last Update: 2024-09-29