Ahn Y, Kim Y, Kim SY (2019) Database of model-scale sloshing experiment for LNG tank and application of artificial neural network for sloshing load prediction. Marine Structures 66:66-82. https://doi.org/10.1016/j.marstruc.2019.03.005
Cetin EC, Lee J, Kim S, Kim Y (2018) Prediction of extreme sloshing pressure using different statistical models. Journal of Advanced Research in Ocean Engineering 4(4):185-194
Chen J, Lin Y, Zhou HJ, Xia ZM, Zhuo SJ (2010) Optimization of ship’s subdivision arrangement for offshore sequential ballast water exchange using a non-dominated sorting genetic algorithm. Ocean Engineering 37:978-988. https://doi.org/10.1016/j.oceaneng.2010.03.012
Chen X, Diez M, Kandashamy M, Zhang Z, Campana E, Stern F (2014) High-fidelity global optimization of shape design by dimensionality reduction, metamodels and deterministic particle swarm. Engineering Optimization; Taylor & Francis:Abingdon, UK 473-494. https://doi.org/10.1080/0305215X.2014.895340
Forrest S (1993) Genetic Algorithms:principles of natural selection applied to computation. Science 261
Gran S (1981) Statistical distributions of local impact pressures. Norweg Marit Res 8(2):2-13
Graupe D (2007) Principles of Artificial Neural Networks. World Scientific Publisher, Advanced Series on Circuits and Systems 6. https://doi.org/10.1142/8868
Grazcyk M, Moan T (2008) A probabilistic assessment of design sloshing pressure time histories in LNG tanks. Ocean Engineering 35:834-855. https://doi.org/10.1016/j.oceaneng.2008.01.020
Harries S, Abt C (2019) CAESES-The HOLISHIP platform for process integration and design optimization. A Holistic Approach to Ship Design; Springer:Berlin/Heidelberg, Germany 276-291
Jin Y, Liu X, Qiu W, Hou C (2008) Time-varying sliding mode controls in rigid spacecraft attitude tracking. Chinese Journal of Aeronautics 21:352-360. https://doi.org/10.1016/S1000-9361(08) 60046-1
Ketabdari MJ, Saghi H (2012) Numerical analysis of trapezoidal storage tank due to liquid sloshing phenomenon. Iranian Journal of Marine Science and Technology 18(61):33-39
Ketabdari MJ, Saghi H (2013a) Parametric study for optimization of storage tanks considering sloshing phenomenon using coupled BEM-FEM. Applied Mathematics and Computation 224:123-139. https://doi.org/10.1016/j.amc.2013.08.036
Ketabdari MJ, Saghi H (2013b) Numerical study on behavior of the trapezoidal storage tank due to liquid sloshing impact. International journal of Computational Methods 10(6):1-22. https://doi.org/10.1142/S0219876213500461
Kuzniatsova M, Shimanovsky A (2016) Definition of rational form of lateral perforated baffle for road tanks. Procedia Engineering 134:72-79. https://doi.org/10.1016/j.proeng.2016.01.041
Li HT, Jing L, Zong Z, Chen Z (2014) Numerical studies on sloshing in rectangular tanks using a tree-based adaptive solver and experimental validation. Ocean Engineering 82:20-31. https://doi.org/10.1016/j.oceaneng.2014.02.011
Mizumura K (1984) Application of Kalman filtering to ocean data. Journal of Waterway, Port, Coastal. And Ocean. Engineering, ASCE l10(3):334-343. https://doi.org/10.1061/(ASCE)0733-950X (1984)110:3(334)
Nakayama T, Washizu K (1984) Boundary element analysis of nonlinear sloshing problems. Published in Developments in Boundary Element Method-3, Bauerjee PK, Mukherjee S, Elsevier Applied Science Publishers, New York
Núñez J, Cruchaga M, Tampier G (2022) Wave analysis based on genetic algorithms using data collected from laboratories at different scales. European Journal of Mechanics-B/Fluids 95:231-239. https://doi.org/10.1016/j.euromechflu.2022.05.006
Saghi H (2016) The pressure distribution on the rectangular and trapezoidal storage tanks’ perimeters due to liquid sloshing phenomenon. International Journal of Naval Architecture and Ocean Engineering 8(12):153-168. https://doi.org/10.1016/j.ijnaoe.2015.12.001
Saghi H, Lakzian E (2017) Optimization of the rectangular storage tanks for the sloshing phenomena based on the entropy generation minimization. Energy 128:564-574. https://doi.org/10.1016/j.energy.2017.04.075
Saghi H, Mikkola T, Hirdaris S (2021) The influence of obliquely perforated dual baffles on sway induced tank sloshing dynamics. Proceedings of the institution of Mechanical Engineerings, Part M:Journal of Engineering for the Maritime Environment 235(4):905-920. https://doi.org/10.1177/1475090220961920
Saltari F, Pizzoli M, Gambioli F, Jetzschmann C, Mastroddi F (2022) Sloshing reduced-order model based on neural networks for aeroelastic analyses. Aerospace Science and Technology 127:107708. https://doi.org/10.1016/j.ast.2022.107708
Sclavounos P, Yu M (2018) Artificial Intelligence machine Learning in marine Hydrodynamics. Proceedings of the International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain Talebitooti R, Shojaeefard MH, Yarmohammadisatri S (2015) Shape design optimization of cylindrical tank using b-spline curves. Computers & Fluids 109:100-112. https://doi.org/10.1016/j.compfluid.2014.12.004
Volpi S, Gaul N, Diez M, Song H, Iema U, Campana E, Choi K, Stern F (2015) Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification. Struct. Multidiscip Optim 51:347-368
Wu CH, Faltinsen OM, Chen BF (2012) Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Computers & Fluids 63:9-26. https://doi.org/10.1016/j.compfluid.2012.02.018
Yen PH, Jan CD, Lee YP, Lee HF (1991) Application of Kalman filter to short-term tide level prediction. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE 122(5):226-231
Zhang C (2015) Application of an improved semi-Lagrangian procedure to fully nonlinear simulation of sloshing in non-wallsided tanks. Applied Ocean Research 51:74-92. https://doi.org/10.1016/j.apor.2015.03.001
Zhao Y, Chen HC (2015) Numerical simulation of 3D sloshing flow in partially filled LNG tank using a coupled level-set and volumeof-fluid method. Ocean Engineering 104:10-30. https://doi.org/10.1016/j.oceaneng.2015.04.083