|Table of Contents|

Citation:
 Yongzhou Cheng,Zhiyuan Lin,Gan Hu,et al.Numerical Simulation of the Hydrodynamic Characteristics of the Porous I-type Composite Breakwater[J].Journal of Marine Science and Application,2022,(1):140-150.[doi:10.1007/s11804-022-00251-4]
Click and Copy

Numerical Simulation of the Hydrodynamic Characteristics of the Porous I-type Composite Breakwater

Info

Title:
Numerical Simulation of the Hydrodynamic Characteristics of the Porous I-type Composite Breakwater
Author(s):
Yongzhou Cheng12 Zhiyuan Lin12 Gan Hu1 Xing Lyu12
Affilations:
Author(s):
Yongzhou Cheng12 Zhiyuan Lin12 Gan Hu1 Xing Lyu12
1 School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China;
2 Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
Keywords:
Wave-structure interactionPlate breakwaterNumerical simulationWave forceRegular waveHydrodynamic
分类号:
-
DOI:
10.1007/s11804-022-00251-4
Abstract:
Based on the three-dimensional Reynolds-averaged Navier-Stokes equation with the closure of renormalization group k-ε turbulence model and volume of fluid method, a wave-breakwater interaction numerical flume was developed to examine the wave-structure interaction of the porous I-type composite (PITC) breakwater. The transmission and reflection coefficients of the breakwater at different wave steepness H/L are quantitatively analyzed, and the wave-dissipating performance of the breakwater is compared. By changing the submerged depth of the breakwater, the velocity field, and vorticity field in the wave propagation process are analyzed, and the optimal working water depth of the new breakwater is explored. The results show that the vertical wave force on the PITC breakwater is greater than the horizontal wave force. In addition, during the wave dissipation process, the transverse baffle provided by the new breakwater destroys the trajectory of the water particle. In the interior of the wave-breaking chamber, the water that enters from the gap of the permeable plate mixes with the water entering through the bottom hole. The turbulence created by this process further dissipates the wave energy. The relative submergence depth of h/d has a great influence on the hydrodynamic characteristics. When the relative depth is large, most of the wave energy enters the breakwater, the wave energy dissipation of the breakwater is large, and the wave-absorbing effect is good. These research results provide important referential data for the study of permeable plate breakwaters.

References:

Amaro RA, Cheng LY, Rosa SV (2019) Numerical study on performance of perforated breakwater for green water.Journal of Water Way, Port, Coastal, and Ocean Engineering 145(6):04019021.1-04019021.19.DOI:10.1061/(ASCE)WW.1943-5460.0000528
Aristodemo F, Meringolo DD, Groenenboom P, Schiavo AL, Veltri P, Veltri M, Zhou JG (2015) Assessment of dynamic pressures at vertical and perforated breakwaters through diffusive SPH schemes.Mathematical Problems in Engineering 2015(Pt.3):305028.1-305028.10.DOI:10.1155/2015/305028
Binumol S, Rao S, Hegde AV (2020) Multiple nonlinear regression analysis for the stability of non-overtopping perforated quarter circle breakwater.Journal of Marine Science and Application, 19(2):293-300.DOI:10.1007/s11804-020-00145-3
Cheng, YZ, Hu G, Lu XH, Yi L, Chang JF (2016) Experimental study on wave dissipation and wave force of the porous I-type plate composition breakwater.Journal of Changsha University of Science and Technology (Natural Science), 13(2):61-69.DOI:10.3969/j.issn.1672-9331.2016.02.011
Deng ZZ, Ren X, Wang LX, Wang P (2019) Hydrodynamic performance of a novel oscillating-water-column breakwater with a horizontal bottom-plate:Experimental and numerical study.Ocean Engineering, 187:106174.DOI:10.1016/j.oceaneng.2019.106174
Duan WY, Liu RZ, Chen JK, Ma S (2020) Hydrodynamic analysis of floating breakwater with perforated structure based on the Taylor expansion boundary element method.Ocean Engineering 200:107040.DOI:10.1016/j.oceaneng.2020.107044
Elbisy MS (2017) Wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters.China Ocean Engineering 31(3):341-349.DOI:10.1007/s13344-017-0040-3
Fang ZC, Xiao LF, Kou YF, Li J (2018) Experimental study of the wavedissipating performance of a four-layer horizontal porous-plate breakwater.Ocean Engineering 151:222-233.DOI:10.1016/j.oceaneng.2018.01.041
Fu D, Zhao XZ, Wang S, Yan DM (2021) Numerical study on the wave dissipating performance of a submerged heaving plate breakwater.Ocean Engineering 219:108310.DOI:10.1016/j.oceaneng.2020.108310
Gerardo VZM, Hector GN, Javier OTF, Edgar M, Ivan E, Ernesto TO (2021) Ocean surface waves propagating over a spatial arrangement of subsurface fixed horizontal plate breakwaters crowned with flexible medium.Journal of Fluids and Structures 100:03188.DOI:10.1016/j.jfluidstructs.2020.103188
Goda Y, Suzuki Y (1976) Estimation of incident and reflected waves in random wave experiments.Proceedings of 15th Conference on Coastal Engineering, Honolulu, HawaiI, 828-845.
Gomes A, Pinho J, Valente T, Carmo JS, Hegde AV (2020) Performance assessment of a semi-circular breakwater through CFD Modelling.Journal of Marine Science and Engineering 8(3):226.DOI:10.3390/jmse8030226
Guenaydin K, Kabdasli MS (2004) Performance of solid and perforated U-type breakwaters under regular and irregular waves.Ocean engineering, 31:1377-1405.DOI:10.1016/j.oceaneng.2004.02.002
Hu YC (2016) Experimental study on wave dissipation and wave force of the porous I-type plate composition breakwater.Master thesis, University of Science and Technology, Changsha, 10-11
Jarlan E (1961) A perforated vertical wall breakwater.The Dock and Harbour Authority, 41(186), 394-398
Li CL, Lan XJ (2018) Numerical simulation of wave dissipation property of a new-type open breakwater.Journal of HydroScience and Engineering (4), 75-80.DOI:10.16198/j.cnki.1009-640X.2018.04.011
Li XY, Wang LX, Wang Q, Xie T, You ZJ, Song KZ, Xie XM, Wan X, Hou CY, Wang YK (2021a)Acomparative study of the hydrodynamic characteristics of permeable twin-flat-plate and twin-arc-plate breakwaters based on physical modeling.Ocean Engineering, 219:108270.DOI:10.1016/j.oceaneng.2020.108270
Li XY, Li Q, Wang Q, Hou CY, Song KZ, Xie T, Zhang ZH, Wan X, Xie XM, Wang YK (2021b) Numerical and experimental investigation on the hydrodynamic characteristics of an arcshaped plate-type breakwater under the action of longperiod waves.Ocean Engineering 219:108198.DOI:10.1016/j.oceaneng.2020.108198
Liu Y, Xie LQ, Zhang ZH (2014) The wave motion over a submerged Jarlan-type perforated breakwater.Acta Oceanologica, Sinica 33(5), 96-102.DOI:10.1007/s13131-014-0471-0
Lynett P, Liu P, Losada I (2000) Solitary wave interaction with porous breakwaters.Journal of waterway, Port, Coastal, and Ocean Engineering 126, 314-322
Mani JS, Jayakumar S (1995) Wave transmission by suspended pipe breakwater.Journal of Waterway, Port, Coastal, and Ocean Engineering 121(6):335-338.DOI:10.1061/(ASCE)0733-950X (1995)121:6(335)
Meringolo DD, Aristodemo F, Veltri P (2015) SPH numerical modeling of wave-perforated breakwater interaction.Coastal Engineering 101:48-68.DOI:10.1016/j.coastaleng.2015.04.004
Mohammadbagheri J, Salimi F, Rahbani M (2019) Applying finite difference method to simulate the performance of a perforated breakwater under regular waves.Journal of Marine Science and Application 18(3), 314-324.DOI:10.1007/s11804-019-00095-5
Neelamani S, Rajendran R (2002a) Wave interaction with ’⊥’-type breakwaters.Ocean Engineering 29, 561-589.DOI:10.1016/S0029-8018(01)00030-0
Neelamani S, Rajendran R (2002b) Wave interaction with T-type breakwaters.Ocean Engineering 29:151-175.DOI:10.1016/S0029-8018(01)00030-0
Orlanski I (1976) A simple boundary condition for unbounded hyperbolic flows.Journal of Computational Physics 21, 251-269.DOI:10.1016/0021-9991(76)90023-1
Poguluri SK, Cho IH (2021) Analytical and numerical study of wave interaction with a vertical slotted barrier.Ships and Offshore Structures 16(9), 1012-1024.DOI:10.1080/17445302.2020.1790299
Qin H, Mu L, Tang WY, Hu Z (2019) Numerical study of the interaction between peregrine breather based freak waves and twin-plate breakwater.Journal of Fluids and Structures 87, 206-227.DOI:10.1016/j.jfluidstructs.2019.04.003
Teh H, Venugopal V, Bruce T (2010) Hydrodynamic performance of a free surface semicircular perforated breakwater.Coastal Engineering Proceedings 1(32):1-13.DOI:10.9753/icce.v32.structures.20
Twu SW, Liu CC, Twu CW (2002).Wave damping characteristics of vertically stratified porous structures under oblique wave action.Ocean Engineering, 29, 1295-1311.DOI:10.1016/S0029-8018(01)00091-9
Vijay KG, Neelamani S, Sahoo T (2019) Wave interaction with multiple slotted barriers inside harbour:Physical and numerical modelling.Ocean Engineering 193:106623.DOI:10.1016/j.oceaneng.2019.106623
Wang GY, Ren B, Wang YX (2016) Experimental study on hydrodynamic performance of arc plate breakwater.Ocean Engineering 111, 593-601.DOI:10.1016/j.oceaneng.2015.11.016
Yan YX, Zheng JH, Zeng XC, Xie HD (1998).Characteristics of wave dissipation for pile-foundation tier-retainer breakwaters.Ocean Engineering, 16(1), 67-74.DOI:10.16483/j.issn.1005-9865.1998.01.008
Zang Z, Fang Z, Zhang N (2018) Flow mechanism of impulsive wave forces and improvement on hydrodynamic performance of a comb-type breakwater.Coastal Engineering 133:142-158.DOI:10.1016/j.coastaleng.2017.12.010

Memo

Memo:
Received date: 2021-07-19;Accepted date: 2021-10-24。
Foundation item:Supported by the National Natural Science Foundation of China under Grants Nos. 51679015 and 52071031.
Corresponding author:Yongzhou Cheng,E-mail:chengyongzhou@163.com
Last Update: 2022-04-22