Allen T (2013) Mechanics of flexible composite hull panels subjected to water impacts. PhD thesis, The University of Auckland, Auckland, New Zealand
Chen Y, Khabakhpasheva T, Maki KJ, Korobkin A (2019) Wedge impact with the influence of ice. Appl Ocean Res 89:12–22. https://doi.org/10.1016/j.apor.2019.05.001
Chuang SL (1967) Experiments on slamming of wedge-shaped bodies. J Ship Res 11(3):190–198. https://doi.org/10.5957/jsr.1967.11.3.190
Cointe R, Armand JL (1987) Hydrodynamic impact analysis of a cylinder. J Offshore Mech Arct Eng 109(3):237–243. https://doi.org/10.1115/1.3257015
Dobrovol’Skaya ZN (1969) On some problems of similarity flow of fluid with a free surface. J Fluid Mech 36(4):805–829. https://doi.org/10.1017/S0022112069001996
Duan G, Matsunaga T, Yamaji A, Koshizuka S, Sakai M (2021) Imposing accurate wall boundary conditions in corrective-matrix-based moving particle semi-implicit method for free surface flow. Int J Numer Meth Fluids 93(1):148–175. https://doi.org/10.1002/fld.4878
Faltinsen OM (1993) Sea loads on ships and offshore structures. Cambridge University Press, pp 282–315
Faltinsen OM (1999) Water entry of a wedge by hydroelastic orthotropic plate theory. J Ship Res 43(3):180–193. https://doi.org/10.5957/jsr.1999.43.3.180
Fourey G, Hermange C, Le Touzé D, Oger G (2017) An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods. Comput Phys Commun 217:66–81. https://doi.org/10.1016/j.cpc.2017.04.005
Hermange C, Oger G, Le Touzé D (2019) Energy considerations in the SPH method with deformable boundaries and application to FSI problems. Journal of Computational Physics: X 1:100008. https://doi.org/10.1016/j.jcpx.2019.100008
Hwang SC, Park JC, Gotoh H, Khayyer A, Kang KJ (2016) Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid–structure interaction analysis method. Ocean Eng 118:227–241. https://doi.org/10.1016/j.oceaneng.2016.04.006
Ikari H, Khayyer A, Gotoh H (2015) Corrected higher order Laplacian for enhancement of pressure calculation by projection-based particle methods with applications in ocean engineering. J Ocean Eng Mar Energy 1(4):361–376. https://doi.org/10.1007/s40722-015-0026-2
Iribe T, Nakaza E (2011) An improvement of accuracy of the MPS method with a new gradient calculation model. Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering) 67(1):36–48. ((in Japanese)) https://doi.org/10.2208/kaigan.67.36
Jain U, Novakovic V, Bogaert H, van der Meer D (2020) On wedge-slamming pressures. arXiv preprint arXiv:2011.10378
Jalalisendi M, Zhao S, Porfiri M (2017) Shallow water entry: modeling and experiments. J Eng Math 104(1):131–156. https://doi.org/10.1007/s10665-016-9877-3
Judge C, Mousaviraad M, Stern F, Lee E, Fullerton A, Geiser J, Schleicher C, Merrill G, Weil C, Morin J, Jiang M, Ikeda C (2020) Experiments and CFD of a high-speed deep-V planing hull–part II: Slamming in waves. Appl Ocean Res 97:102059. https://doi.org/10.1016/j.apor.2020.102059
Kamath A, Bihs H, Arntsen ?A (2017) Study of water impact and entry of a free falling wedge using computational fluid dynamics simulations. J Offshore Mech Arct Eng 139(3):031802. https://doi.org/10.1115/1.4035384
Khabakhpasheva TI, Korobkin AA (2013) Elastic wedge impact onto a liquid surface: Wagner’s solution and approximate models. J Fluids Struct 36:32–49. https://doi.org/10.1016/j.jfluidstructs.2012.08.004
Khayyer A, Gotoh H (2009) Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure. Coast Eng 56(4):419–440. https://doi.org/10.1016/j.coastaleng.2008.10.004
Khayyer A, Gotoh H (2010) A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method. Appl Ocean Res 32(1):124–131. https://doi.org/10.1016/j.apor.2010.01.001
Khayyer A, Gotoh H (2011) Enhancement of stability and accuracy of the moving particle semi-implicit method. J Comput Phys 230(8):3093–3118. https://doi.org/10.1016/j.jcp.2011.01.009
Khayyer A, Gotoh H (2016) A multiphase compressible-incompressible particle method for water slamming. Intern J Offshore Polar Eng 26(1):20–25. https://doi.org/10.17736/ijope.2016.mk42
Khayyer A, Gotoh H, Falahaty H, Shimizu Y (2018a) An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput Phys Commun 232:139–164. https://doi.org/10.1016/j.cpc.2018.05.012
Khayyer A, Gotoh H, Falahaty H, Shimizu Y (2018b) Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction. J Hydrodyn 30(1):49–61. https://doi.org/10.1007/s42241-018-0005-x
Khayyer A, Tsuruta N, Shimizu Y, Gotoh H (2019) Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering. Appl Ocean Res 82:397–414. https://doi.org/10.1016/j.apor.2018.10.020
Kihara H (2004) Numerical modeling of flow in water entry of a wedge. Proc. 19th International Workshop on Water Waves and Floating Bodies, Cortona, Italy, pp 28–31
Korobkin A (2004) Analytical models of water impact. Eur J Appl Math 15(6):821–838. https://doi.org/10.1017/S0956792504005765
Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Sci Eng 123(3):421–434. https://doi.org/10.13182/NSE96-A24205
Maki KJ, Lee D, Troesch AW, Vlahopoulos N (2011) Hydroelastic impact of a wedge-shaped body. Ocean Eng 38(4):621–629. https://doi.org/10.1016/j.oceaneng.2010.12.011
Marrone S, Colagrossi A, Le Touzé D, Graziani G (2010) Fast free-surface detection and level-set function definition in SPH solvers. J Comput Phys 229(10):3652–3663. https://doi.org/10.1016/j.jcp.2010.01.019
Matsunaga T, Koshizuka S (2021) Improvement of the time marching method in a particle method. Transactions of the JSME, 20–00437. (in Japanese) https://doi.org/10.1299/transjsme.20-00437
Oberkampf WL, Trucano TG (2002) Verification and validation in computational fluid dynamics. Prog Aerosp Sci 38(3):209–272. https://doi.org/10.1016/S0376-0421(02)00005-2
Oger G, Doring M, Alessandrini B, Ferrant P (2006) Two-dimensional SPH simulations of wedge water entries. J Comput Phys 213(2):803–822. https://doi.org/10.1016/j.jcp.2005.09.004
Oger G, Guilcher PM, Jacquin E, Brosset L, Deuff JB, Le Touzé D (2009) Simulations of hydro-elastic impacts using a parallel SPH model The Nineteenth International Offshore and Polar Engineering Conference. Osaka, Japan, pp I-09–038
Panciroli R, Porfiri M (2013) Evaluation of the pressure field on a rigid body entering a quiescent fluid through particle image velocimetry. Exp Fluids 54(12):1630. https://doi.org/10.1007/s00348-013-1630-3
Piro DJ, Maki KJ (2013) Hydroelastic analysis of bodies that enter and exit water. J Fluids Struct 37:134–150. https://doi.org/10.1016/j.jfluidstructs.2012.09.006
Seddon CM, Moatamedi M (2006) Review of water entry with applications to aerospace structures. Int J Impact Eng 32(7):1045–1067. https://doi.org/10.1016/j.ijimpeng.2004.09.002
Sun H, Faltinsen OM (2007) The influence of gravity on the performance of planing vessels in calm water. J Eng Math 58(1–4):91–107. https://doi.org/10.1007/s10665-006-9107-5
Tajima M, Yabe T (1999) Simulation on slamming of a vessel by CIP method. J Phys Soc Jpn 68(8):2576–2584. https://doi.org/10.1143/JPSJ.68.2576
Tanaka M, Masunaga T (2010) Stabilization and smoothing of pressure in MPS method by quasi-compressibility. J Comput Phys 229(11):4279–4290. https://doi.org/10.1016/j.jcp.2010.02.011
Tsuruta N, Khayyer A, Gotoh H (2013) A short note on dynamic stabilization of moving particle semi-implicit method. Comput Fluids 82:158–164. https://doi.org/10.1016/j.compfluid.2013.05.001
Tsuruta N, Khayyer A, Gotoh H (2015) Space potential particles to enhance the stability of projection-based particle methods. International Journal of Computational Fluid Dynamics 29(1):100–119. https://doi.org/10.1080/10618562.2015.1006130
Tveitnes T, Fairlie-Clarke AC, Varyani K (2008) An experimental investigation into the constant velocity water entry of wedge-shaped sections. Ocean Eng 35(14–15):1463–1478. https://doi.org/10.1016/j.oceaneng.2008.06.012
Vincent L, Xiao T, Yohann D, Jung S, Kanso E (2018) Dynamics of water entry. J Fluid Mech 846:508–535. https://doi.org/10.1017/jfm.2018.273
Wagner H (1932) über Sto?- und Gleitvorg?nge an der Oberfl?che von Flüssigkeiten. Z Angew Math Mech 12(4):193–215. ((in German)) https://doi.org/10.1002/zamm.19320120402
Wang J, Faltinsen OM (2017) Improved numerical solution of Dobrovol’skaya’s boundary integral equations on similarity flow for uniform symmetrical entry of wedges. Appl Ocean Res 66:23–31. https://doi.org/10.1016/j.apor.2017.05.006
Wang J, Zhang X (2019) Improved Moving Particle Semi-implicit method for multiphase flow with discontinuity. Comput Methods Appl Mech Eng 346:312–331. https://doi.org/10.1016/j.cma.2018.12.009
Wang S, Guedes Soares C (2017) Review of ship slamming loads and responses. J Mar Sci Appl 16(4):427–445. https://doi.org/10.1007/s11804-017-1437-3
Waskito KT, Kashiwagi M, Iwashita H, Hinatsu M (2020) Prediction of nonlinear vertical bending moment using measured pressure distribution on ship hull. Appl Ocean Res 101:102261. https://doi.org/10.1016/j.apor.2020.102261
Watanabe I (1986) Analytical expression of hydrodynamic impact pressure by matched asymptotic expansion technique. Transactions of the West-Japan Society of Naval Architects 71:77–85. https://doi.org/10.14856/wjsna.71.0_77
Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396. https://doi.org/10.1007/BF02123482
Yettou EM, Desrochers A, Champoux Y (2006) Experimental study on the water impact of a symmetrical wedge. Fluid Dyn Res 38(1):47. https://doi.org/10.1016/j.fluiddyn.2005.09.003
Yokoyama Y, Iida T (2021) Simulations of wedge slamming in vicinity of floating ice using particle-based solver. The 31st International Ocean and Polar Engineering Conference, pp I-21–1265
Zhao R, Faltinsen O (1993) Water entry of two-dimensional bodies. J Fluid Mech 246:593–612. https://doi.org/10.1017/S002211209300028X