|Table of Contents|

Citation:
 Nalan Oya San Keskin,Esra Yaylaci,Selen Guclu Durgun,et al.Anticorrosive Properties of Green Silver Nanoparticles to Prevent Microbiologically Influenced Corrosion on Copper in the Marine Environment[J].Journal of Marine Science and Application,2021,(1):10-20.[doi:10.1007/s11804-020-00188-6]
Click and Copy

Anticorrosive Properties of Green Silver Nanoparticles to Prevent Microbiologically Influenced Corrosion on Copper in the Marine Environment

Info

Title:
Anticorrosive Properties of Green Silver Nanoparticles to Prevent Microbiologically Influenced Corrosion on Copper in the Marine Environment
Author(s):
Nalan Oya San Keskin1 Esra Yaylaci2 Selen Guclu Durgun23 Furkan Deniz1 Hasan Naz?r4
Affilations:
Author(s):
Nalan Oya San Keskin1 Esra Yaylaci2 Selen Guclu Durgun23 Furkan Deniz1 Hasan Naz?r4
1. Polatl? Science and Literature Faculty, Biology Department, Nanosan Laboratory, Ankara Hac? Bayram Veli University, 06900 Ankara, Turkey;
2. Faculty of Medicine, Department of Medical Biology and Genetics, Gazi University, 06560 Ankara, Turkey;
3. Department of Medical Biology, Lokman Hekim University, 06510 Ankara, Turkey;
4. Faculty of Science, Department of Chemistry, Ankara University, 06100 Ankara, Turkey
Keywords:
AntimicrobialCopperElectrochemical impedance spectroscopyTransmission electron microscopyMicrobiologically influenced corrosionNanoparticle
分类号:
-
DOI:
10.1007/s11804-020-00188-6
Abstract:
Microbiologically influenced corrosion is a global problem especially materials used in marine engineering. In that respect, inhibitors are widely used to control fouling and corrosion in marine systems. Most techniques used in inhibitor production are expensive and considered hazardous to the ecosystem. Therefore, scientists are motivated to explore natsural and green products as potent corrosion inhibitors especially in nano size. In this study, antibacterial and anticorrosive properties of green silver nanoparticles (AgNPs) were studied through weight loss, electrochemical characterization, and surface analysis techniques. The corrosion of copper (Cu) in artificial seawater (ASW), Halomonas variabilis (H. variabilis) NOSK, and H. variabilis + AgNPs was monitored using electrochemical measurements like open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves. AgNPs showed excellent antibacterial activity against pathogenic microorganisms. Electrochemical studies demonstrate a noticeable decrease in OCP and current density in ASW containing H. variabilis + AgNPs compared to both ASW and ASW inoculated with bacterium, which confirmed the decrease of corrosion rate of copper. Furthermore, the obtained voltammograms show that the silver nanoparticles were adsorbed on the copper electrode surface from the corrosion solution. Thus, the results prove that the novel idea of green silver nanoparticles acts as an anticorrosive film in the marine environment.

References:

Abdolahi A, Hamzah E, Ibrahim Z, Hashim S (2014) Microbially influenced corrosion of steels by Pseudomonas aeruginosa. Corros Rev 32(3-4):129–141. https://doi.org/10.1515/corrrev-2013-0047
Arulmozhi V, Pandian K, Mirunalini S (2013) Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B: Biointerfaces, 110, 313-320. https://doi.org/10.1016/j.colsurfb.2013.03.039
Baygar T, Sarac N, Ugur A, Karaca IR (2019) Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg Chem 86:254–258. https://doi.org/10.1016/j.bioorg.2018.12.034
Bhaumik J, Gogia G, Kirar S, Vijay L, Thakur NS, Banerjee UC, Laha JK (2016) Bioinspired nanophotosensitizers: synthesis and characterization of porphyrin–noble metal nanoparticle conjugates. New J Chem 40(1):724–731. https://doi.org/10.1039/C5NJ02056E
Brauer JI, Celikkol-Aydin S, Sunner JA, Gaylarde CC, Beech IB (2017) Metabolomic imaging of a quaternary ammonium salt within a marine bacterial biofilm on carbon steel. Int Biodeterior Biodegradation 125:33–36. https://doi.org/10.1016/j.ibiod.2017.08.007
Cao H (2017) Silver nanoparticles for antibacterial devices: biocompatibility and toxicity. CRC Press https://doi.org/10.1201/9781315370569
Chandra K, Mahanti A, Singh AP, Kain V, Gujar HG (2019) Microbiologically influenced corrosion of 70/30 cupronickel tubes of a heat-exchanger. Eng Fail Anal 105:1328–1339. https://doi.org/10.1016/j.engfailanal.2019.08.005
Chen S, Zhang D (2018) Study of corrosion behavior of copper in 3.5 wt.% NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria. Corros Sci 136:275–284. https://doi.org/10.1016/j.corsci.2018.03.017
Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gramnegative bacteria. Biol Med 6(1):103–109. https://doi.org/10.1016/j.nano.2009.04.006
Firdhouse MJ, Lalitha P (2015) Biosynthesis of silver nanoparticles and its applications. J Nanotechnol pp 1–18. https://doi.org/10.1155/2015/829526
George RP, Muraleedharan P, Sreekumari KR, Khatak HS (2003) Influence of surface characteristics and microstructure on adhesion of bacterial cells onto a type 304 stainless steel. Biofouling 19(1):1–8. https://doi.org/10.1080/08927010290031017
Giovanni M, Pumera M (2012) Size dependant electrochemical behavior of silver nanoparticles with sizes of 10, 20, 40, 80 and 107 nm.Electroanalysis 24(3):615–617. https://doi.org/10.1002/elan.201100690
Gou Y, Zhou R, Ye X, Gao S, Li X (2015) Highly efficient in vitro biosynthesis of silver nanoparticles using Lysinibacillus sphaericus MR-1 and their characterization. Sci Technol Adv Mater 16(1):015004. https://doi.org/10.1088/1468-6996/16/1/015004
Hebbalalu D, Lalley J, Nadagouda MN, Varma RS (2013) Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng 1(7):703–712. https://doi.org/10.1021/sc4000362
Huang Y, Peng X, Chen XQ (2019) TiO2 nanoparticles-assisted α-Al2O3 direct thermal growth on nickel aluminide intermetallics: template effect of the oxide with the hexagonal oxygen sublattice. Corros Sci 153:109–117. https://doi.org/10.1016/j.corsci.2019.03.025
Jia R, Unsal T, Xu D, Lekbach Y, Gu T (2019) Microbiologically influenced corrosion and current mitigation strategies: a state of the art review. Int Biodeterior Biodegradation 137:42–58. https://doi.org/10.1016/j.ibiod.2018.11.007
Kailasa SK, Park TJ, Rohit JV. Koduru JR (2019) Antimicrobial activity of silver nanoparticles. In Nanoparticles in Pharmacotherapy, 461-484. https://doi.org/10.1016/B978-0-12-816504-1.00009-0
Kardas M, Gozen AG, Severcan F (2014) FTIR spectroscopy offers hints towards widespread molecular changes in cobalt-acclimated freshwater bacteria. Aquat Toxicol 155:15–23. https://doi.org/10.1016/j.aquatox.2014.05.027
Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101. https://doi.org/10.1016/j.nano.2006.12.001
Kip N, Van Veen JA (2015) The dual role of microbes in corrosion. ISME J 9(3):542–551. https://doi.org/10.1038/ismej.2014.169
Li X, Zhang D, Liu Z, Li Z, Du C, Dong C (2015) Materials science:share corrosion data. Nature 527(7579):441–442. https://doi.org/10.1038/527441a
Little BJ, Lee JS (2007) Microbiologically influenced corrosion (Vol. 3). John Wiley & Sons. https://doi.org/10.1002/047011245X
Liu H, Cheng YF (2018) Mechanistic aspects of microbially influenced corrosion of X52 pipeline steel in a thin layer of soil solution containing sulphate-reducing bacteria under various gassing conditions. Corros Sci 133:178–189. https://doi.org/10.1016/j.corsci.2018.01.029
Liu H, Gu T, Lv Y, Asif M, Xiong F, Zhang G, Liu H (2017) Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water. Corros Sci 117:24–34. https://doi.org/10.1016/j.corsci.2017.01.006
Liu T, Wang Y, Pan S, Zhao Q, Zhang C, Gao S, Guo Z, Guo N, Sand W, Chang X, Dong L, Yin Y (2019) The addition of copper accelerates the corrosion of steel via impeding biomineralized film formation of Bacillus subtilis in seawater. Corros Sci 149:153–163. https://doi.org/10.1016/j.corsci.2019.01.010
Maharubin S, Nayak C, Phatak O, Kurhade A, Singh M, Zhou Y, Tan G (2019) Polyvinylchloride coated with silver nanoparticles and zinc oxide nanowires for antimicrobial applications. Mater Lett 249:108–111. https://doi.org/10.1016/j.matlet.2019.04.058
Mittal AK, Bhaumik J, Kumar S, Banerjee UC (2014) Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J Colloid Interface Sci 415:39–47. https://doi.org/10.1016/j.jcis.2013.10.018
Moradi M, Ye S, Song Z (2019) Dual role of Pseudoalteromonas piscicida biofilm for the corrosion and inhibition of carbon steel in artificial seawater. Corros Sci 152:10–19. https://doi.org/10.1016/j.corsci.2019.02.025
Narenkumar J, Parthipan P, Madhavan J, Murugan K, Marpu SB, Suresh AK, Rajasekar A (2018) Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers. Environ Sci Pollut Res 25(6):5412–5420. https://doi.org/10.1007/s11356-017-0768-6
Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res 13(8):3129–3137. https://doi.org/10.1007/s11051-010-0208-8
Otari SV, Patil RM, Ghosh SJ, Thorat ND, Pawar SH (2015) Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 136:1175–1180. https://doi.org/10.1016/j.saa.2014.10.003
Ou HH, Tran QTP, Lin PH (2018) A synergistic effect between gluconate and molybdate on corrosion inhibition of recirculating cooling water systems. Corros Sci 133:231–239. https://doi.org/10.1016/j.corsci.2018.01.014
Palisoc ST, Natividad MT, De Jesus N, Carlos J (2018) Highly sensitive AgNP/MWCNT/Nafion modified GCE-based sensor for the determination of heavy metals in organic and non-organic vegetables. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-018-35781-x
Park SI, Daeschel MA, Zhao Y (2004) Functional properties of antimicrobial lysozyme-chitosan composite films. J Food Sci 69:M215–M221. https://doi.org/10.1111/j.1365-2621.2004.tb09890.x
Parthipan P, Babu TG, Anandkumar B, Rajasekar A (2017) Biocorrosion and its impact on carbon steel API 5LX by Bacillus subtilis A1 and Bacillus cereus A4 isolated from Indian crude oil reservoir. J BioTribo-Corros 3(3):32. https://doi.org/10.1007/s40735-017-0091-2
Peszke J, Nowak A, Szade J, Szurko A, Zygad?o D, Micha?owska M, Ostafin MM (2016) Effect of silver/copper and copper oxide nanoparticle powder on growth of Gram-negative and Gram-positive bacteria and their toxicity against the normal human dermal fibroblasts. J Nanopart Res 18(12):355. https://doi.org/10.1007/s11051-016-3671-z
Poulios I, Spathis P, Grigoriadou A, Delidou K, Tsoumparis P (1999) Protection of marbles against corrosion and microbial corrosion with TiO2 coatings. J Environ Sci Health Part A 34(7):1455–1471. https://doi.org/10.1080/10934529909376905
Preethi PS, Narenkumar J, Prakash AA, Abilaji S, Prakash C, Rajasekar A, Nanthini AUR, Valli G (2019) Myco-synthesis of zinc oxide nanoparticles as potent anti-corrosion of copper in cooling towers. J Clust Sci 30(6):1583–1590. https://doi.org/10.1007/s10876-019-01600-0
San Keskin NO, Celebioglu A, Sarioglu OF, Ozkan AD, Uyar T, Tekinay T (2015) Removal of nanofibrous web. RSC Adv 5(106):86867–86874. https://doi.org/10.1039/C5RA15601G
San Keskin NO, Ko?berber K?l?? N, D?nmez G, Tekinay T (2016) Green synthesis of silver nanoparticles using cyanobacteria and evaluation of their photocatalytic and antimicrobial activity. Int J Nano Res 40:120–127. https://doi.org/10.4028/www.scientific.net/JNanoR.40.120
San NO, Naz?r H, D?nmez G (2012a) Microbiologically influenced corrosion of NiZn alloy coatings by Delftia acidovorans bacterium. Corros Sci 64:198–203. https://doi.org/10.1016/j.corsci.2012.07.021
San NO, Naz?r H, D?nmez G (2012b) Microbiologically influenced corrosion failure analysis of nickel–copper alloy coatings by Aeromonas salmonicida and Delftia acidovorans bacterium isolated from pipe system. Eng Fail Anal 25:63–70. https://doi.org/10.1016/j.engfailanal.2012.04.007
Shah S, Gaikwad S, Nagar KS, Vaidya V, Nawani N, Pawar S (2019)Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling 35(1):34–49. https://doi.org/10.1080/08927014.2018.1563686
Shahverdi AR, Minaeian, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923. https://doi.org/10.1016/j.procbio.2007.02.005
Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria.J Colloid Interface Sci 275(1):177–182. https://doi.org/10.1016/j.jcis.2004.02.012
Starosvetsky J, Starosvetsky D, Armon R (2007) Identification of microbiologically influenced corrosion (MIC) in industrial equipment failures. Eng Fail Anal 14(8):1500–1511. https://doi.org/10.1016/j.engfailanal.2007.01.020
Thakur NS, Bhaumik J, Kirar S, Banerjee UC (2017) Development of gold-based phototheranostic nanoagents through a bioinspired route and their applications in photodynamic therapy. ACS Sustain Chem Eng 5(9):7950–7960. https://doi.org/10.1021/acssuschemeng.7b01501
Videla HA, Herrera LK (2009) Understanding microbial inhibition of corrosion. A comprehensive overview. Int Biodeterior Biodegradation 63(7):896–900. https://doi.org/10.1016/j.ibiod.2009.02.002
Videla HA, de Mele MFL, Brankevich G (1988) Technical note: assessment of corrosion and microfouling of several metals in polluted seawater. Corrosion 44(7):423–426. https://doi.org/10.5006/1.3583957
Wang W, Li X, Wang J, Xu H, Wu J (2004) Influence of biofilms growth on corrosion potential of metals immersed in seawater. Mater Corros 55(1):30–35. https://doi.org/10.1002/maco.200303690
Wang H, Ju LK, Castaneda H, Cheng G, Newby BMZ (2014) Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans. Corros Sci 89:250–257. https://doi.org/10.1016/j.corsci.2014.09.005
Xu D, Xia J, Zhou E, Zhang D, Li H, Yang C, Yang K (2017) Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Bioelectrochemistry 113:1–8.https://doi.org/10.1016/j.bioelechem.2016.08.001
Ye J, Hu D, Yin J, Huang W, Xiang R, Zhang L, Wang X, Han J, Chen GQ (2020) Stimulus response-based fine-tuning of polyhydroxyalkanoate pathway in Halomonas. Metab Eng 57:85–95. https://doi.org/10.1016/j.ymben.2019.10.007
Yeagle PL (2011) The structure of biological membranes. CRC press https://doi.org/10.1201/b11018
Yuan S, Liang B, Zhao Y, Pehkonen SO (2013) Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria.Corros Sci 74:353–366. https://doi.org/10.1016/j.corsci.2013.04.058
Zhou E, Li H, Yang C, Wang J, Xu D, Zhang D, Gu T (2018) Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. Int Biodeterior Biodegradation 127:1–9.https://doi.org/10.1016/j.ibiod.2017.11.00

Memo

Memo:
Received date:2020-02-29;Accepted date:2020-09-17。
Foundation item:This research is funded by the Scientific and Technological Research Council of Turkey (TüBITAK, Project MAG#218 M508).
Corresponding author:Nalan Oya San Keskin, nalan.san@hbv.edu.tr
Last Update: 2021-06-10