|Table of Contents|

Citation:
 Rajae Gaamouche,Abdelbari Redouane,Imad El harraki,et al.Optimal Feedback Control of Nonlinear Variable-Speed Marine Current Turbine Using a Two-Mass Model[J].Journal of Marine Science and Application,2020,(1):83-95.[doi:10.1007/s11804-020-00134-6]
Click and Copy

Optimal Feedback Control of Nonlinear Variable-Speed Marine Current Turbine Using a Two-Mass Model

Info

Title:
Optimal Feedback Control of Nonlinear Variable-Speed Marine Current Turbine Using a Two-Mass Model
Author(s):
Rajae Gaamouche1 Abdelbari Redouane2 Imad El harraki2 Bouchra Belhorma3 Abdennebi El Hasnaoui2
Affilations:
Author(s):
Rajae Gaamouche1 Abdelbari Redouane2 Imad El harraki2 Bouchra Belhorma3 Abdennebi El Hasnaoui2
1 Electromechanics Department, Mohammadia School of Engineering, 10000 Rabat, Morocco;
2 Electromechanics Department, National Superior School of Mines, 10000 Rabat, Morocco;
3 National Centre for Energy Sciences and Nuclear Techniques, 10000 Rabat, Morocco
Keywords:
MarinecurrentturbineTwo-massmodelTipspeedratioLinearizationOptimalcontrolLinearquadraticregulator (LQR)
分类号:
-
DOI:
10.1007/s11804-020-00134-6
Abstract:
This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine (MCT) without pitch operating below the rated marine current speed. Given that the operation of the MCT can be divided into several operating zones on the basis of the marine current speed, the system control objectives are different for each zone. To deal with this issue, we develop a new control approach based on a linear quadratic regulator with variable generator torque. Our proposed approach enables the optimization of the rotational speed of the turbine, which maximizes the power extracted by the MCT and minimizes the transient loads on the drivetrain. The novelty of our study is the use of a real profile of marine current speed from the northern coasts of Morocco. The simulation results obtained using MATLAB Simulink indicate the effectiveness and robustness of the proposed control approach on the electrical and mechanical parameters with the variations of marine current speed.

References:

Anderson DO, Anderson John B (2007) Optimal control:linear quadratic methods. Research School of information Sciences and Engineering. Dover Publications, Inc, Mineola, New York, pp 262-282
Antonova G, Nardi M, Scott A, Pesin M (2012). Distributed generation and its impact on power grids and microgrids protection. In Protective Relay Engineers, College Station, TX, USA, 152-161.
DOI:https://doi.org/10.1109/CPRE.2012.6201229
Anvari M, Lohmann G, Wachter M, Milan P, Lorenz E, Heinemann D, Peinke J (2016) Short term fluctuations of wind and solar power systems. New Journal of Physics 18(6):063027-061-15. https://doi.org/10.1088/1367-2630/18/6/063027
Athans M, Falb PL (2013) Optimal control:an introduction to the theory and its applications, Dover Publications, Inc. Mineola, New York, pp 364-424
Barrera-Cardenas R, Molinas M (2012) Optimal LQG controller for variable speed wind turbine based on genetic algorithms. Energy Procedia 20:207-216. https://doi.org/10.1016/j.egypro.2012.03.021
Bassi H, Mobarak YA (2017) State-space modeling and performance analysis of variable-speed wind turbine based on a model predictive control approach. Engineering, Technology & Applied Science Research 7(2):1436-1443
Bayat F, Bahmani H (2017) Power regulation and control of wind turbines:LMI-based output feedback approach. International Transactions on Electrical Energy Systems 27(12):e2450. https://doi.org/10.1002/etep.2450
Benelghali S, Benbouzid MEH, Charpentier JF (2012) Generator systems for marine current turbine applications:a comparative study. IEEE Journal of Oceanic Engineering 37(3):554-563. https://doi.org/10.1109/JOE.2012.2196346
Blackmore T, Myers LE, Bahaj AS (2016) Effects of turbulence on tidal turbines:implications to performance, blade loads, and condition monitoring. International Journal of Marine Energy 14:1-26.https://doi.org/10.1016/j.ijome.2016.04.017
Boukhezzar B, Siguerdidjane H (2010) Comparison between linear and nonlinear control strategies for variable speed wind turbines. Control Engineering Practice 18(12):1357-1368. https://doi.org/10.1016/j.conengprac.2010.06.010
Boukhezzar B, Siguerdidjane H (2011) Nonlinear control of a variablespeed wind turbine using a two-mass model. IEEE Transactions on Energy Conversion 26(1):149-162. https://doi.org/10.1109/TEC.2010.2090155
Chen H, Tang T, Aït-Ahmed N, Benbouzid MEH, Machmoum M, Zaïm MEH (2018) Attraction, challenge and current status of marine current energy. IEEE Access 6:12665-12685. https://doi.org/10.1109/ACCESS.2018.2795708
Chen H, Tang T, Han J, Ait-Ahmed N, Machmoum M, Zaim MEH (2019) Current waveforms analysis of toothed pole Doubly Salient Permanent Magnet (DSPM) machine for marine tidal current applications. International Journal of Electrical Power & Energy Systems 106:242-253. https://doi.org/10.1016/j.ijepes.2018.10.005
Einrí AN, Jónsdóttir GM, Milano F (2019). Modeling and control of marine current turbines and energy storage systems. International Federation of Automatic Control 2019, Jeju, 52(4), 425-430.
DOI:https://doi.org/10.1016/j.ifacol.2019.08.247
Fakharzadeh A, Jamshidi F, Talebnezhad L (2013) New approach for optimizing energy by adjusting the trade-off coefficient in wind turbines. Energy, Sustainability and Society 3(1):3-19. https://doi.org/10.1186/2192-0567-3-19
Fox CJ, Benjamins S, Masden EA, Miller R (2018) Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates. Renewable and Sustainable Energy Reviews 81:1926-1938. https://doi.org/10.1016/j.rser.2017.06.004
Frost C, Morris CE, Mason-Jones A, O’Doherty DM, O’Doherty T (2015) The effect of tidal flow directionality on tidal turbine performance characteristics. Renewable Energy 78:609-620. https://doi.org/10.1016/j.renene.2015.01.053
Gaamouche A, Redouane A, El H, Belhorma B, Kchikach M, Jeffali F (2018) Review of technologies and direct drive generator systems for a grid connected marines current turbine. J. Mater. Environ. Sci. 9(9):2631-2644
Hodur RM (1997) The Naval Research Laboratory is coupled ocean/atmosphere mesoscale prediction system (COAMPS). Monthly Weather Review 125(7):1414-1430. https://doi.org/10.1175/1520-0493(1997)125<1397:LSIOTC>2.0.CO;2
Jena D, Rajendran S (2015) A review of estimation of effective wind speed based control of wind turbines. Renewable and Sustainable Energy Reviews 43:1046-1062. https://doi.org/10.1016/j.rser.2014.11.088
Khargonekar PP, Petersen IR, Zhou K (1990) Robust stabilization and H ∞ optimal control. IEEE Trans:356-361. https://doi.org/10.1109/9.50357
Khettache L (2019). Contribution à l’Amélioration des Performances Des Systèmes Eoliens. PhD thesis, Universite Mohamed Khider Biskra, A1-141.
Kumar A, Stol K (2010) Simulating feedback linearization control of wind turbines using high-order models. Wind Energy 13(5):419-432. https://doi.org/10.1002/we.363
Kumar V, Pandey AS, Sinha SK (2016). Grid integration and power quality issues of wind and solar energy system:a review. Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES-16), Sultanpur City, India,71-80.
DOI:https://doi.org/10.1109/ICETEESES.2016.7581355
Levine WS (2018) Control system advanced methods. Second Edition.The Control Systems Handbook, Boca Raton, pp 17-24. https://doi.org/10.1201/9781315218694
Liu J, Gao Y, Geng S, Wu L (2016). Nonlinear control of variable speed wind turbines via fuzzy techniques. IEEE Access, 5, 27-34.
DOI:0.1109/ACCESS.2016.2599542
Mahmoud MS, Oyedeji MO (2016) Optimal control of wind turbines under islanded operation. Intelligent Control and Automation 8(1):1-14. https://doi.org/10.4236/ica.2017.81001
Mason-Jones A, O’doherty DM, Morris CE, O’doherty T, Byrne CB, Prickett PW, Poole RJ (2012) Non-dimensional scaling of tidal stream turbines. Energy 44(1):820-829. https://doi.org/10.1016/j.energy.2012.05.010
Melikoglu M (2018) Current status and future of ocean energy sources:a global review. Ocean Engineering 148:563-573. https://doi.org/10.1016/j.oceaneng.2017.11.045
Mycek P, Gaurier B, Germain G, Pinon G, Rivoalen E (2014) Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I:one single turbine. Renewable Energy 66:729-746. https://doi.org/10.1016/j.renene.2013.12.036
Omkar K, Karthikeyan KB, Srimathi R, Venkatesan N, Avital EJ, Samad A, Rhee SH (2019) A performance analysis of tidal turbine conversion system based on control strategies. Energy Procedia 160:526-533. https://doi.org/10.1016/j.egypro.2019.02.202
Pham HT, Bourgeot JM, Benbouzid M (2017) Fault-tolerant finite control set-model predictive control for marine current turbine applications. IET Renewable Power Generation 12(4):415-421. https://doi.org/10.1049/iet-rpg.2017.0431
Prasad S, Purwar S, Kishor N (2019) Non-linear sliding mode control for frequency regulation with variable-speed wind turbine systems. International Journal of Electrical Power & Energy Systems 107:19-33. https://doi.org/10.1016/j.ijepes.2018.11.005
Qian P, Feng B, Liu H, Tian X, Si Y, Zhang D (2019) Review on configuration and control methods of tidal current turbines. Renewable and Sustainable Energy Reviews 108:125-139. https://doi.org/10.1016/j.rser.2019.03.051
Rourke FO, Boyle F, Reynolds A (2010) Marine current energy devices:current status and possible future applications in Ireland. Renewable and Sustainable Energy Reviews 14(3):1026-1036. https://doi.org/10.1016/j.rser.2009.11.012
Seck A, Moreau L, Benkhoris MF, Machmoum M (2018). Control strategies of five-phase PMSG-rectifier under two open phase faults for current turbine system. 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, 1-6.
DOI:/https://doi.org/10.1109/PEAC.2018.8590645
Thiébaut M, Sentchev A (2015) Estimation of tidal stream potential in the Iroise Sea from velocity observations by high frequency radars. Energy Procedia 76:17-26. https://doi.org/10.1016/j.egypro.2015.07.835
Toumi S, Benelghali S, Trabelsi M, Elbouchikhi E, Amirat Y, Benbouzid M, Mi-mouni MF (2017) Modeling and simulation of a PMSGbased marine current turbine system under faulty rectifier conditions. Electric Power Components & Systems 45(7):715-725. https://doi.org/10.1080/15325008.2017.1293197
Zhou Z, Scuiller F, Charpentier JF, Benbouzid M, Tang T (2013). Power limitation control for a PMSG-based marine current turbine at high tidal speed and strong sea state. Electric Machines & Drives Conference (IEMDC), Chicago, 75-80.
DOI:https://doi.org/10.1109/IEMDC.2013.6556195

Memo

Memo:
Received date:2019-05-09;Accepted date:2019-11-15。
Corresponding author:Rajae Gaamouche,raja.escom@gmail.com
Last Update: 2020-07-24