|Table of Contents|

Citation:
 Yanhui Wei,Jing Liu,Shenggong Hao,et al.Design of Heading Fault-Tolerant System for Underwater Vehicles Based on Double-Criterion Fault Detection Method[J].Journal of Marine Science and Application,2019,(4):530-541.[doi:10.1007/s11804-019-00109-2]
Click and Copy

Design of Heading Fault-Tolerant System for Underwater Vehicles Based on Double-Criterion Fault Detection Method

Info

Title:
Design of Heading Fault-Tolerant System for Underwater Vehicles Based on Double-Criterion Fault Detection Method
Author(s):
Yanhui Wei Jing Liu Shenggong Hao Jiaxing Hu
Affilations:
Author(s):
Yanhui Wei Jing Liu Shenggong Hao Jiaxing Hu
College of Automation, Harbin Engineering University, Harbin 150001, China
Keywords:
UnderwaterrobotHeading faulttoleranceRedundant structureDouble-criteria failure detectionFederated Kalman filterElectronic compass
分类号:
-
DOI:
10.1007/s11804-019-00109-2
Abstract:
This paper proposes a heading fault tolerance scheme for operation-level underwater robots subject to external interference. The scheme is based on a double-criterion fault detection method using a redundant structure of a dual electronic compass. First, two subexpansion Kalman filters are set up to fuse data with an inertial attitude measurement system. Then, fault detection can effectively identify the fault sensor and fault source. Finally, a fault-tolerant algorithm is used to isolate and alarm the faulty sensor. The program can effectively detect the constant magnetic field interference, change the magnetic field interference and small transient magnetic field interference, and conduct fault tolerance control in time to ensure the heading accuracy of the system. Test verification shows that the system is practical and effective.

References:

Arulampalam MS, Maskell S, Gordon N (2002) A tutorial on particle filters for online nonlinearn-Gaussian Bayesian tracking. IEEE Trans Signal Process 50:174-188. https://doi.org/10.1109/78.978374
Babcock PSI, Zinchuk JJ (1990) Fault-tolerant design optimization:application to an autonomous underwater vehicle navigation system.Proceedings of the Autonomous Underwater Vehicle Technology, pp 34-43. https://doi.org/10.1109/AUV.1990.110435
Bar-Shalom Y, Kirubarajan T, Li XR (2011) Estimation with Applications to Tracking and Navigation.Theory, Algorithms and Software,John Wiley & S ons,Inc.https://doi.org/10.1161/HYPERTENSIONAHA.109.130880
Blanke M, Kinnaert M, Lunze DIJ (2006) Diagnosis and fault-tolerant control. Diagnosis and Fault-tolerant Control, pp 493-494. https://doi.org/10.1007/978-3-540-35653-0
Caron F, Davy M, Duflos E (2007) Particle filtering for multisensor data fusion with switching observation models:application to land vehicle positioning. IEEE Trans Signal Process 55:2703-2719. https://doi.org/10.1109/tsp.2007.893914
Cheng XQ, Qu JY, Yan ZP, Bian XQ (2010) H∞ robust fault-tolerant controller design for an autonomous underwater vehicle’s navigation control system. J Mar Sci Appl 9(1):87-92. https://doi.org/10.1007/s11804-010-8052-x
Crisan D, Rozovski? BL (2011) The oxford handbook of nonlinear filtering. Oxford University Press 39(8):1849-1850. https://doi.org/10.1080/02664763.2012.680690
Cui N, Han P, Mu R (2011) Fault-tolerant integrated navigation for reusable boost vehicle based on strong tracking UKF. AIAA international space Planes and hypersonic systems and technologies conference. https://doi.org/10.2514/6.2011-2385
Esfahani PM, Lygeros J (2016) A tractable fault detection and isolation approach for nonlinear systems with probabilistic performance.IEEE Trans Autom Control 61(3):633-647. https://doi.org/10.1109/tac.2015.2438415
Fang J, Sun H, Cao J, Zhang X, Tao Y (2011) A novel calibration method of magnetic compass based on ellipsoid fitting. IEEE Trans Instrum Meas 60(6):2053-2061. https://doi.org/10.1109/tim.2011.2115330
Feng Y B, Li X S, Zhang XJ (2015) Fault detection method for integrated navigation system of gyroscope and compass. Journal of instrument and meter 36:2381-2388.
Gao S, Zhong Y, Li W (2011) Robust adaptive filtering method for SINS/SAR integrated navigation system. Aerosp Sci Technol 15(6):425-430. https://doi.org/10.1016/j.ast.2010.08.007
Gao W, Zhang Y, Wang JG (2014) A strapdown interial navigation system/Beidou/Doppler velocity log integrated navigation algorithm based on a cubature Kalman filter. Sensors 14(1):1511-1527.https://doi.org/10.3390/s140101511
Hajiyev C (2012) Fault tolerant integrated radar/inertial altimeter based on nonlinear robust adaptive Kalman filter. Aerosp Sci Technol 17(1):40-49. https://doi.org/10.1016/j.ast.2011.03.005
Julier SJ, Uhlmann JK, Durrant-Whyte HF (2002) A new approach for filtering nonlinear systems. Proc Am Control Conf 3:1628-1632.https://doi.org/10.1109/acc.1995.529783
Le HX, Matunaga S (2014) A residual based adaptive unscented kalman filter for fault recovery in attitude determination system of microsatellites. Acta Astronautica 105(1):30-39. https://doi.org/10.1016/j.actaastro.2014.08.020
Li S, Li S, Pei R (2011) Multiple sets of INS fault detection based on information fusion. Int Conf Electron Meas Instrum 4:81-85.https://doi.org/10.1109/icemi.2011.6037952
Liang Y, Jia Y (2015) A nonlinear quaternion-based fault-tolerant SINS/GNSS integrated navigation method for autonomous UAVs.Aerosp Sci Technol 40:191-199. https://doi.org/10.1016/j.ast.2014.11.009
Mohajerin Esfahani P, Lygeros JA, Tractable (2015) Fault Detection and Isolation Approach for Nonlinear Systems with Probabilistic Performance. IEEE Transactions on Automatic Control 1-1.https://doi.org/10.1109/TAC.2015.2438415
N?rgaard M, Poulsen NK, Ravn O (2000) New developments in state estimation for nonlinear systems. Automatica 36:1627-1638.https://doi.org/10.1016/s0005-1098(00)00089-3
Poulsen NK, Ravn O (2000) New developments in state estimation for nonlinear systems. Pergamon Press, Inc. https://doi.org/10.1016/s0005-1098(00)00089-3
Ritz T, Wiltschko R, Hore PJ, Rodgers CT, Stapput K, Thalau P, Wiltschko W (2009) Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys J 96(8):3451-3457. https://doi.org/10.1016/j.bpj.2008.11.072
Sun F, Song H, Gao W (2005) Study of SINS/GPS/DVL integrated navigation system’s fault tolerance. Mechatronics and automation. 2005 IEEE international conference, IEEE, 737-767. https://doi.org/10.1109/icma.2005.1626585
Wang XH (2009) Research on threshold selection principle based on sensor fault detection. Mech Eng Autom 2:105-106. https://doi.org/10.3969/j.issn.1672-6413.2009.02.041
Zhao B, Skjetne R, Blanke M, Dukan F (2014) Particle filter for fault diagnosis and robust navigation of underwater robot. IEEE Trans Control Syst Technol 22(6):2399-2407. https://doi.org/10.1109/tcst.2014.2300815
Zhen G, Feng S (2005) Research on integrated navigation method for auv.J Mar Sci Appl 4(2):34-38. https://doi.org/10.1007/s11804-005-0030-3
Zheng Q, Bian XQ (2006) Simulation platform of navigation system for autonomous underwater vehicle. J Mar Sci Appl 5(4):33-37. https://doi.org/10.1007/s11804-006-6024-y

Memo

Memo:
Received date:2018-08-04;Accepted date:2018-12-19。
Foundation item:This study is supported by the Natural Science Foundation of Heilongjiang Province (E2017024); 13th Five-Year PreResearch (J040717005); National Defense Basic Research (A0420132202); and China International Ministry of Science and Technology International Cooperation Project (2014DFR10010).
Corresponding author:Yanhui Wei,15663423085@163.com
Last Update: 2020-02-04