Al-hmouz A, Shen J, Al-Hmouz R, Yan J (2012) Modeling and simulation of an adaptive neuro-fuzzy inference system (ANFIS) for mobile learning. IEEE Trans Learn Technol 5(3):226-237. https://doi.org/10.1109/TLT.2011.36
Azmathulla HMD, Ghani Ab A (2011) ANFIS-based approach for predicting the scour depth at culvert outlets. J Pipeline Syst Eng Pract 2(1):35-40. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000066
Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267-278
Chiu S (1996) Method and software for extracting fuzzy classification rules by subtractive clustering. North American Fuzzy Information Processing Society Conf. (NAFIPS’96), Berkeley, 19-22. https://doi.org/10.1109/NAFIPS.1996.534778
Dattatri J (1993) Waves off Mangalore harbour-west coast of India. J Waterw Port Coast Ocean Eng, ASCE 99(2):39-57
Deo MC (2010) Artificial neural networks in coastal and ocean engineering. Indian J Mar Sci 39(4):589-596
Dhinakaran G, Sundar V, Sundaravadivelu R, Graw KU (2009) Effect of perforations and rubble mound height on wave transformation characteristics of surface piercing semicircular breakwaters. Ocean Eng 36:1182-1198. https://doi.org/10.1016/j.oceaneng.2009.08.005
Erdik T, Savci ME, Sen Z (2009) Artificial neural network for predicting maximum wave runup on rubble mound structures. Expert Syst Appl 36(3):6403-6408. https://doi.org/10.1016/j.eswa.2008.07.049
Goyal R, Singh K, Hegde AV (2014) Quarter circular breakwater:prediction and artificial neural network. Mar Technol Soc J 48:1-7.https://doi.org/10.4031/MTSJ.48.1.7
Harish N, Mandal S, Rao S, Patil SG (2015) Particle Swarm Optimization based support vector machine for damage level prediction of nonreshaped berm breakwater. Appl Soft Comput 27:313-321. https://doi.org/10.1016/j.asoc.2014.10.041
Hiremath S, Patra SK (2010) Transmission rate prediction for cognitive radio using adaptive neural fuzzy inference system. Proc IEEE Ind Inf Syst Conf Mangalore, India, p 92-97
Issacson M (1991) Measurement of regular wave reflection. J Waterway Port Coastal Ocean Eng ASCE 117(6):553-569
Jabbari E, Talebi O (2011) Using artificial neural networks for estimation of scour at the head of vertical wall breakwater. J Coast Res SI 64(ICS2011):521-526
Jain P, Deo MC (2008) Artificial neural networks for coastal and ocean studies. 12th Int Conf Int Assoc Comput Methods Adv Geomech, Goa, India, p 1655-1663
Janardhan P, Harish N, Rao S, Shirlal KG (2015) Performance of variable selection method for the damage level prediction of reshaped berm breakwater. Aquat Procedia 4:302-307. https://doi.org/10.1016/j.aqpro.2015.02.041
Jang JR (1993) ANFIS:adaptive-network-based fuzzy inference system.IEEE Trans Syst Man Cybern 23(3):665-685
Karsoliya S (2012) Approximating number of hidden layer neurons in multiple hidden layer BPNN. Architecture Int J Eng Trends Technol 6:714-717
Kim DH, Kim YJ, Hur DS (2014) Artificial neural network based breakwater damage estimation considering tidal level variation. Ocean Eng 87:185-190. https://doi.org/10.1016/j.oceaneng.2014.06.001
Kudumula SR, Mutukuru MRG (2013) Experimental studies on low crested rubble mound, semicircular breakwaters and vertical wall system. Int J Ocean Climate Syst 4(3):213-226 http://journals.sagepub.com/doi/abs/10.1260/1759-3131.4.3.213
Kundapura S, Hegde AV, Wazerkar AV (2019) Beyond the data range approach to soft compute the reflection coefficient for emerged perforated semicircular breakwater, In:Murali K, Sriram V, Samad A, Saha N (eds) Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018). Lecture Notes in Civil Engineering, vol 23. Springer, p 281-292
Lee A, Kim SE, Suh KD (2015) Estimation of stability number of rock armor using artificial neural network combined with principal component analysis. Procedia Eng 116:149-154. https://doi.org/10.1016/j.proeng.2015.08.276
Mandal S, Patil S, Hegde AV (2009) Wave transmission prediction of multilayer floating breakwater using neural network. Proc 3rd International Conference in Ocean Engineering, ICOE-2009, ⅡT Madras, Chennai, p 574-585
Mohammady S (2016) Optimization of adaptive neuro-fuzzy inference system based urban growth model. City Territ Archit 3(10):1-15.https://doi.org/10.1186/s40410-016-0039-8
Mohan RU, Sood YR, Jarial RK (2015) Subtractive clustering fuzzy expert system for engineering applications. Procedia Comput Sci 48(C):77-83. https://doi.org/10.1016/j.procs.2015.04.153
Nishanth N (2008) Hydrodynamic performance characteristics of semicircular breakwaters. Master Thesis, National Insitutute of Technology Karnataka, Surathkal, Mangaluru, India, Appendix 5-13
Panchal FS, Panchal M (2014) Review on methods of selecting number of hidden nodes in artificial neural network. Int J Comput Sci Mob Comput 3(11):455-464
Patil SG, Mandal S, Hegde AV, Alavandar S (2011) Neuro-fuzzy based approach for wave transmission prediction of horizontally interlaced multilayer moored floating pipe breakwater. Ocean Eng 38:186-196. https://doi.org/10.1016/j.oceaneng.2010.10.009
Raju B, Hegde AV, Chandrashekar O (2015) Computational intelligence on hydrodynamic performance characteristics of emerged perforated quarter circle breakwater. Procedia Eng 116:118-124. https://doi.org/10.1016/j.proeng.2015.08.272
Ratrout NT (2011) Subtractive clustering-based K -means technique for determining optimum time-of-day breakpoints. J Comput Civ Eng 25(5):380-387. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000099
Sooraj M (2009) Sliding stability and hydrodynamic performance of emerged semicircular breakwater, Master Thesis, NITK, Surathkal, Mangaluru, India, AppendixⅡ, 96-102
Sreejith KU (2015) Sliding stability and hydrodynamic performance of emerged semicircular breakwater, Master Thesis, NITK, Surathkal, Mangaluru, India, Appendix 95-104
Tiwari S, Babbar R, Kaur G (2018) Performance evaluation of two ANFIS models for predicting water quality index of river Satluj(India). Adv Civil Eng 2018:8971079. https://doi.org/10.1155/2018/8971079
Vishal K (2010) Hydrodynamic performance characteristics of one side and two side perforated semicircular breakwater. Master Thesis, NITK, Surathkal, Mangaluru, India, Appendix I, 79-83
Yagci O, Mercan DE, Cigizoglu HK, Kabdasli MS (2005) Artificial intelligence methods in breakwater damage ratio estimation. Ocean Eng 32:2088-2106. https://doi.org/10.1016/j.oceaneng.2005.03.004
Zanuttigh B, Mizar S, Briganti R (2013) A neural network for the prediction of wave reflection from coastal and harbor structures. Coast Eng 80:49-67. https://doi.org/10.1016/j.coastaleng.2013.05.004
Zhou Q, Wang F, Zhu F (2016) Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks and adaptive neuro-fuzzy inference systems. Constr Build Mater 125:417-426. https://doi.org/10.1016/j.conbuildmat.2016.08.064