|Table of Contents|

Citation:
 Dendy Satrio,I Ketut Aria Pria Utama,Mukhtasor.Numerical Investigation of Contra Rotating Vertical-Axis Tidal-Current Turbine[J].Journal of Marine Science and Application,2018,(2):208-215.[doi:10.1007/s11804-018-0017-5]
Click and Copy

Numerical Investigation of Contra Rotating Vertical-Axis Tidal-Current Turbine

Info

Title:
Numerical Investigation of Contra Rotating Vertical-Axis Tidal-Current Turbine
Author(s):
Dendy Satrio1 I Ketut Aria Pria Utama2 Mukhtasor3
Affilations:
Author(s):
Dendy Satrio1 I Ketut Aria Pria Utama2 Mukhtasor3
1 Ocean Energy Engineering and Management, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
2 Department of Naval Architecture, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
3 Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Keywords:
Tidal-currentenergyContrarotatingturbineVertical-axisturbineTwo-dimensionalcomputationalfluiddynamicsPerformance analysis
分类号:
-
DOI:
10.1007/s11804-018-0017-5
Abstract:
In this study, the performance of a contra rotating vertical-axis tidal-current turbine was investigated. The incompressible unsteady Reynolds-averaged Navier-Stokes (U-RANS) equations were solved via two-dimensional (2D) numerical simulation using ANSYS Fluent computational fluid dynamics (CFD) code. An algorithm known as SIMPLE from the CFD code was used to calculate the pressure-velocity coupling and second-order finite-volume discretization for all the transport equations. The base turbine model was validated using the available experimental data. Three given scenarios for the contra rotating turbine were modeled. The contra rotating turbine performs better in a low tip speed ratio (TSR) than in a high TSR operation. In a high TSR operation, the contra rotating turbine inefficiently operates, surviving to rotate in the chaotic flow distribution. Thus, it is recommended to use contra rotating turbine as a part of new design to increase the performance of a vertical-axis tidal-current turbine with a lower TSR.

References:

Arini NR, Turnock SR, Tan M (2016) A study of modified vertical axis tidal turbine to improve lift performance. Int J Electr Energy 4(1):37-41. https://doi.org/10.18178/ijoee.4.1.37-41
Barbarelli S, Florio G, Amelio M, Scornaienchi NM, Cutrupi A, Zupone GL (2014) Design procedure of an innovative turbine with rotors rotating in opposite directions for exploitation of the tidal currents.Energy 77:254-264. https://doi.org/10.1016/j.energy.2014.08.04.4
Elsevier Bouzaher MT, Guerira B, Hadid M (2017) Performance analysis of a vertical axis tidal turbine with flexible blades. J Marine Sci Appl 16:73-80. https://doi.org/10.1007/s11804-017-1391-0
Cheng Z, Madsen HA, Gao Z, Moan T (2017) Effects of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines. Renew Energy 101:1285-1298. https://doi.org/10.1016/j.renene.2016.09.074 Elsevier
Clarke JA, Connor G, Grant AD, Johnstone CM (2007) Design and testing of a contra-rotating tidal current turbine. Proc IMechE A J Power Energy 221:171-179. https://doi.org/10.1243/09576509JPE296
Clarke J, Connor G, Grant A, Johnstone C, Ordonez-Sanchez S (2009) Contra-rotating marine current turbine:single point tethered floating system-stability and performance. In:Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden
Gorban AN, Gorlov AM, Silantyev VM (2001) Limits of the turbine efficiency for free fluid flow. J Energy Resour Technol ASME 123:311-317. https://doi.org/10.1115/1.1414137
Gorlov AM (2001) Tidal energy. Academic Press, Boston, pp 2955-2960. https://doi.org/10.1006/rwos.2001.0032
Guang Z, Ran-sheng Y, Yan L, Peng-fei Z (2013) Hydrodynamic performance of a vertical-axis tidal-current turbine with different preset angles of attack. J Hydrodyn 25(2):280-287. https://doi.org/10.1016/S1001-6058(13)60364-9 Elsevier
Güney MS, Kaygusuz K (2010) Hydrokinetic energy conversion systems:a technology status review. Renew Sust Energy Rev 14:2996-3004. https://doi.org/10.1016/j.rser.2010.06.016 Elsevier
Huang B, Kanemoto T (2015) Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine. Renew Energy 81:837-844. https://doi.org/10.1016/j.renene.2015.04.008 Elsevier
Kirke BK, Lazauskas L (2011) Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch. Renew Energy 36:893-897. https://doi.org/10.1016/j.renene.2010.08.027 Elsevier
Le TQ, Lee K-S, Park J-S, Ko JH (2014) Flow-driven rotor simulation of vertical axis tidal turbines:a comparison of helical and straight blades. Int J Nav Archit Ocean Eng 6:257-268. https://doi.org/10.2478/IJNAOE-2013-0177 SNAK
Lee NJ, Kim IC, Kim CG, Hyun BS, Lee YH (2015) Performance study on a counter-rotating tidal current turbine by CFD and model experimentation. Renew Energy 79:122-126. https://doi.org/10.1016/j.renene.2014.11.022 Elsevier
Luo XQ, Zhu GJ, Feng JJ (2014) Multi point design optimization of hydrofoil for marine current turbine. J Hydrodyn 26(5):807-817.https://doi.org/10.1016/S1001-6058(14)60089-5 Elsevier
Lynn PA (2014) Electricity from wave and tide:an introduction to marine energy. Wiley, London, pp 1-5
Magagna D, Uihlein A (2015) Ocean energy development in Europe:current status and future perspectives. Int J Mar Energy 11:84-104. https://doi.org/10.1016/j.ijome.2015.05.001 Elsevier
Maitre T, Amet A, Pellon C (2013) Modeling of the flow in a Darrieus water turbine:wall grid refinement analysis and comparison with experiments. Renew Energy 51:497-512. https://doi.org/10.1016/j.renene.2012.09.030 Elsevier
Marsh P, Ranmuthulaga D, Penesis I, Thomas G (2015a) Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines. Renew Energy 81:926-935. https://doi.org/10.1016/je.renene.2015.03.083 Elsevier
Marsh P, Ranmuthulaga D, Penesis I, Thomas G (2015b) Threedimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting force. Renew Energy 83:67-77. https://doi.org/10.1016/j.renene.2015.04.014 Elsevier
Marsh P, Ranmuthulaga D, Penesis I, Thomas G (2017) The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines. Renew Energy 105:106-116. https://doi.org/10.1016/je.renene.2016.11.063 Elsevier
Mukhtasor (2014) Mengenal Energi Laut (in Bahasa). Surabaya, pp 1-13
Ordonez-Sanchez S, Grant A, Johnstone C (2010) Contra rotating marine turbines tank tests to analyse system dynamic response. 3rd International Conference on Ocean Energy, Bilbao, Spain, 1-6.
DOI:https://www.icoe-conference.com/publication/contra_rotating_marine_turbines_tank_tests_to_analyse_system_dynamic_response/
Roh S-C, Kang S-H (2013) Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine. J Mech Sci Technol 27(11):3299-3307.https://doi.org/10.1007/s12206-013-0852-x
Satrio D, Utama I K A P and Mukhtasor (2016) Vertical axis tidal turbine:advantages and challenges review. Proceeding of Ocean, Mechanical and Aerospace -Science and Engineering, Kuala Terengganu, Malaysia, 3:64-71. http://isomase.org/OMAse/Vol.3-2016/Section-1/3-7.pdf
Sheng Q, Khalid SS, Xiong Z, Sahib G, Zhang L (2013) CFD simulation of fixed and variable pitch vertical axis tidal turbine with flexible blades. J Mar Sci Appl 12:185-192. https://doi.org/10.1007/s11804-013-1184-z
Yuce MI, Muratoglu A (2015) Hydrokinetic energy conversion systems:a technology status review. Renew Sust Energy Rev 43:72-82.https://doi.org/10.1016/j.rser.2014.10.037 Elsevier
Zanette J, Imbault D, Tourabi A (2010) A design methodology for cross flow water turbines. Renew Energy 35:997-1009. https://doi.org/10.1016/j.renene.2009.09.014 Elsevier
Zeiner-Gundersen DH (2015) A novel flexible foil vertical axis turbine for river, ocean, and tidal applications. Appl Energy 151:60-66.https://doi.org/10.1016/j.apenergy.2015.01.005 Elsevier

Memo

Memo:
Received date:2017-06-21;Accepted date:2017-12-27。
Foundation item:This current project is funded by the Directorate General of Resources for Science, Technology and Higher Education,Ministry of Research, Technology and Higher Education of RepublicIndonesia under a scheme called The Education of Master DegreeLeading to Doctoral Program for Excellent Graduates (PMDSU) undercontract number 135/SP2H/LT/DRPM/IV/2017.
Corresponding author:Dendy Satrio,dendy.satrio15@mhs.na.its.ac.id
Last Update: 2018-10-11