|Table of Contents|

Citation:
 Seyed Masoud Mahmoudof,Peyman Badiei,Seyed Mostafa Siadatmousavi,et al.Spectral Wave Modeling in Very Shallow Water at Southern Coast of Caspian Sea[J].Journal of Marine Science and Application,2018,(1):140-151.[doi:10.1007/s11804-018-0011-y]
Click and Copy

Spectral Wave Modeling in Very Shallow Water at Southern Coast of Caspian Sea

Info

Title:
Spectral Wave Modeling in Very Shallow Water at Southern Coast of Caspian Sea
Author(s):
Seyed Masoud Mahmoudof1 Peyman Badiei2 Seyed Mostafa Siadatmousavi3 Vahid Chegini1
Affilations:
Author(s):
Seyed Masoud Mahmoudof1 Peyman Badiei2 Seyed Mostafa Siadatmousavi3 Vahid Chegini1
1 Iranian National Institute for Oceanography and Atmospheric Sciences(INIOAS), Tehran 1411813389, Islamic Republic of Iran;
2 School of Civil Engineering, College of Engineering, University of Tehran, P. O. Box 11155-4563, Tehran, Iran;
3 School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran 1684613114, Iran
Keywords:
Caspian SeaShallow waterSWANSpectral peak energyCoastal processes
分类号:
-
DOI:
10.1007/s11804-018-0011-y
Abstract:
This study evaluates the capability of the Simulating WAves Nearshore (SWAN) wave model (version 41.01) in predicting significant wave height and spectral peak energy content for swell waves in very shallow water of surf zone during depth-induced wave breaking and dissipation. The model results were compared with field measurements at five nearshore stations. The results demonstrated that some breaker index formulations were successful for significant wave height prediction in surf zones. However, an incorrect shape of the energy spectrum and overestimated near spectral peak energy content at shallow water stations were obtained using all of the embedded depth-induced wave breaking formulations in SWAN. The dependent breaker index on relative depth (Kpd) formulation, which was successful in predicting near spectral peak energy content, resulted in an average error of 30%. Finally, this formulation was modified to enhance the model performance in reproducing the spectral peak energy content.

References:

Alsina J, Baldock T (2007) Improved representation of breaking wave energy dissipation in parametric wave transformation models. Coast Eng 54(10):765-769. https://doi.org/10.1016/j.coastaleng.2007.05.005
Baldock T, Holmes P, Bunker S, Van Weert P (1998) Cross-shore hydrodynamics within an unsaturated surf zone. Coast Eng 34(3):173-196. https://doi.org/10.1016/S0378-3839(98)00017-9
Battjes J, Janssen J (1978). Energy loss and set-up due to breaking of random waves. Coastal Eng Proc, 1(16). https://doi.org/10.1061/9780872621909.034
Battjes J, Stive M (1985) Calibration and verification of a dissipation model for random breaking waves. J Geophys Res:Oceans (1978-2012) 90(C5):9159-9167. https://doi.org/10.1029/JC090iC05p09159
Becq F (1998). Extension de la modélisation spectrale des états de mer vers le domaine côtier Becq-Girard F, Forget P, Benoit M (1999) Non-linear propagation of unidirectional wave fields over varying topography. Coast Eng 38(2):91-113. https://doi.org/10.1016/S0378-3839(99)00043-5
Beji S, Battjes J (1993) Experimental investigation of wave propagation over a bar. Coast Eng 19(1):151-162. https://doi.org/10.1016/0378-3839(93)90022-Z
Benit M (2009). Formulation and quantification of the distributed collinear triad approximation TU Delft, M.Sc. thesis, Delft University of Technology UUID:2d1720e2-f4ce-4c6b-8e3d-1bd7d9f7cfa1
Booij N, Ris R, Holthuijsen LH (1999) A third-generation wave model for coastal regions:1. Model description and validation. J Geophys Res:Oceans (1978-2012) 104(C4):7649-7666. https://doi.org/10.1029/98JC02622
Bottema M, van Vledder GP (2009) A ten-year data set for fetch-and depth-limited wave growth. Coast Eng 56(7):703-725. https://doi.org/10.1016/j.coastaleng.2009.01.012
Dong G, Ma Y, Perlin M, Ma X, Yu B, Xu J (2008) Experimental study of wave-wave nonlinear interactions using the wavelet-based bicoherence. Coast Eng 55(9):741-752. https://doi.org/10.1016/j.coastaleng.2008.02.015
Eldeberky Y (1996). Nonlinear transformation of wave spectra in the nearshore. Ph.D thesis, TU Delft, Delft University of Technology
Eldeberky Y, Battjes J (1995) Parameterization of triad interactions in wave energy models. Proc Coastal Dynamic 95:140-148
Elgar S, Freilich M, Guza R (1990) Model-data comparisons of moments of nonbreaking shoaling surface gravity waves. J Geophys Res:Oceans (1978-2012) 95(C9):16055-16063. https://doi.org/10.1029/JC095iC09p16055
Elgar S, Guza R, Freilich M (1993) Observations of nonlinear interactions in directionally spread shoaling surface gravity waves. J Geophys Res:Oceans 98(C11):20299-20305. https://doi.org/10.1029/JC095iC06p09645
Elgar S, Herbers T, Chandran V, Guza R (1995) Higher-order spectral analysis of nonlinear ocean surface gravity waves. J Geophys Res:Oceans (1978-2012) 100(C3):4977-4983. https://doi.org/10.1029/94JC02900
Fenton J (1990) Nonlinear wave theories. Sea, Ocean Eng Sci 9:3-25
Goda Y (2004) A 2-D random wave transformation model with gradational breaker index. Coast Eng J 46(01):1-38. https://doi.org/10.1142/S0578563404000884
Goda Y (2009) A performance test of nearshore wave height prediction with CLASH datasets. Coast Eng 56(3):220-229. https://doi.org/10.1016/j.coastaleng.2008.07.003
Goda Y (2010) Reanalysis of regular and random breaking wave statistics. Coast Eng J 52(01):71-106. https://doi.org/10.1142/S0578563410002129
Goda Y, Morinobu K (1998) Breaking wave heights on horizontal bed affected by approach slope. Coast Eng J 40(04):307-326. https://doi.org/10.1142/S0578563498000182
Gorrell L, Raubenheimer B, Elgar S, Guza R (2011) SWAN predictions of waves observed in shallow water onshore of complex bathymetry.Coast Eng 58(6):510-516. https://doi.org/10.1016/j.coastaleng.2011.01.013
Groeneweg J, van der Westhuysen A, van Vledder GP, Jacobse S, Lansen J, van Dongeren A (2009). Wave modelling in a tidal inlet:performance of SWAN in the Wadden Sea. Proc. 31th Int. Conf. Coastal Eng., ASCE, City, 411-423. doi https://doi.org/10.1142/9789814277426_0035
Hanson JL, Phillips OM (2001) Automated analysis of ocean surface directional wave spectra. J Atmos Ocean Technol 18(2):277-293.https://doi.org/10.1175/1520-0426
Hasselmann K (1962) On the non-linear energy transfer in a gravity-wave spectrum part 1. General theory. J Fluid Mech 12(04):481-500.https://doi.org/10.1017/S0022112062000373
Herbers T, Russnogle N, Elgar S (2000) Spectral energy balance of breaking waves within the surf zone. J Phys Oceanogr 30(11):2723-2737.https://doi.org/10.1175/1520-0485
Janssen T, Battjes J (2007) A note on wave energy dissipation over steep beaches. Coast Eng 54(9):711-716. https://doi.org/10.1016/j.coastaleng.2007.05.006
Katsardi V, De Lutio L, Swan C (2013) An experimental study of large waves in intermediate and shallow water depths. Part I:wave height and crest height statistics. Coast Eng 73:43-57. https://doi.org/10.1016/j.coastaleng.2012.09.007
Lippmann T, Brookins A, Thornton E (1996) Wave energy transformation on natural profiles. Coast Eng 27(1):1-20. https://doi.org/10.1016/0378-3839(95)00036-4
Mahmoudof SM, Badiei P, Siadatmousavi SM, Chegini V (2016)Observing and estimating of intensive triad interaction occurrence in very shallow water. Cont Shelf Res 122:68-76. https://doi.org/10.1016/j.csr.2016.04.003
Marshall RJ, Stephenson WJ (2011) The morphodynamics of shore platforms in a micro-tidal setting:interactions between waves and morphology. Mar Geol 288(1):18-31. https://doi.org/10.1016/j.margeo.2011.06.007
Masselink G (1998) Field investigation of wave propagation over a bar and the consequent generation of secondary waves. Coast Eng 33(1):1-9. https://doi.org/10.1016/S0378-3839(97)00032-X
Najafi-Jilani A, Nik-Khah A (2011) Development of integrated marine monitoring network on southern coastline of Caspian Sea. Int J Naval Architect Ocean Eng 3(2):136-140. https://doi.org/10.2478/IJNAOE-2013-0056
Nelson RC (1987) Design wave heights on very mild slopes-an experimental study. Transactions of the Institution of Engineers, Australia.Civ Eng 29(3):157-161
Rattanapitikon W, Vivattanasirisak T, Shibayama T (2003) A proposal of new breaker height formula. Coast Eng J 45(01):29-48. https://doi.org/10.1142/S0578563403000634
Ris R, Holthuijsen L, Booij N (1999) A third-generation wave model for coastal regions:2. Verification. J Geophys Res:Oceans (1978-2012) 104(C4):7667-7681. https://doi.org/10.1029/98JC02622
Robertson B, Hall K, Zytner R, Nistor I (2013) Breaking waves:review of characteristic relationships. Coast Eng J 55(01):1350002. https://doi.org/10.1142/S0578563413500022
Ruessink B, Walstra D, Southgate H (2003) Calibration and verification of a parametric wave model on barred beaches. Coast Eng 48(3):139-149. https://doi.org/10.1016/S0378-3839(03)00023-1
Rusu E (2009) Wave energy assessments in the Black Sea. J Mar Sci Technol 14(3):359-372. https://doi.org/10.1007/s00773-009-0053-6
Rusu E, Onea F (2013) Evaluation of the wind and wave energy along the Caspian Sea. Energy 50:1-14. https://doi.org/10.1016/j.energy.2012.11.044
Salmon J, Holthuijsen L, Zijlema M, van Vledder GP, Pietrzak J (2015) Scaling depth-induced wave-breaking in two-dimensional spectral wave models. Ocean Model 87:30-47. https://doi.org/10.1016/j.ocemod.2014.12.011
Sénéchal N, Bonneton P, Dupuis H (2002) Field experiment on secondary wave generation on a barred beach and the consequent evolution of energy dissipation on the beach face. Coast Eng 46(3):233-247.https://doi.org/10.1016/S0378-3839(02)00095-9
The Wamdi Group (1988) The WAM model-a third generation ocean wave prediction model. J Phys Oceanogr 18(12):1775-1810.https://doi.org/10.1175/1520-0485
Thornton EB, Guza R (1983) Transformation of wave height distribution.J Geophys Res:Oceans (1978-2012) 88(C10):5925-5938. https://doi.org/10.1029/JC088iC10p05925
Ting FC (2001) Laboratory study of wave and turbulence velocities in a broad-banded irregular wave surf zone. Coast Eng 43(3):183-208.https://doi.org/10.1016/S0378-3839(01)00013-8
Van Vledder GP, Groeneweg J, van der Westhuysen A (2009). Numerical and physical aspects of wave modelling in a tidal inlet. Proc. 31th Int. Conf. Coastal Eng., ASCE, City, 424-436. https://doi.org/10.1142/9789814277426_0036
Zijlema M, van der Westhuysen AJ (2005) On convergence behaviour and numerical accuracy in stationary SWAN simulations of nearshore wind wave spectra. Coast Eng 52(3):237-256. https://doi.org/10.1016/j.coastaleng.2004.12.006

Memo

Memo:
Received date:2017-01-09;Accepted date:2017-07-04。
Foundation item:This study was supported by Iranian National Institute for Oceanography and Atmospheric Science
Corresponding author:Seyed Masoud Mahmoudof, m_mahmoudof@inio.ac.ir
Last Update: 2018-10-11