|Table of Contents|

Citation:
 K. B. Artana,T. Pitana,D. P. Dinariyana,et al.Real-time Monitoring of Subsea Gas Pipelines, Offshore Platforms, and Ship Inspection Scores Using an Automatic Identification System[J].Journal of Marine Science and Application,2018,(1):101-111.[doi:10.1007/s11804-018-0003-y]
Click and Copy

Real-time Monitoring of Subsea Gas Pipelines, Offshore Platforms, and Ship Inspection Scores Using an Automatic Identification System

Info

Title:
Real-time Monitoring of Subsea Gas Pipelines, Offshore Platforms, and Ship Inspection Scores Using an Automatic Identification System
Author(s):
K. B. Artana1 T. Pitana1 D. P. Dinariyana1 M. Ariana1 D. Kristianto2 E. Pratiwi1
Affilations:
Author(s):
K. B. Artana1 T. Pitana1 D. P. Dinariyana1 M. Ariana1 D. Kristianto2 E. Pratiwi1
1 Department of Marine Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
2 Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Keywords:
Automatic identification systemAISReal-time monitoringSubsea gas pipelineOffshore platform Ship inspection score
分类号:
-
DOI:
10.1007/s11804-018-0003-y
Abstract:
The aim of this research is to develop an algorithm and application that can perform real-time monitoring of the safety operation of offshore platforms and subsea gas pipelines as well as determine the need for ship inspection using data obtained from automatic identification system (AIS). The research also focuses on the integration of shipping database, AIS data, and others to develop a prototype for designing a real-time monitoring system of offshore platforms and pipelines. A simple concept is used in the development of this prototype, which is achieved by using an overlaying map that outlines the coordinates of the offshore platform and subsea gas pipeline with the ship’s coordinates (longitude/latitude) as detected by AIS. Using such information, we can then build an early warning system (EWS) relayed through short message service (SMS), email, or other means when the ship enters the restricted and exclusion zone of platforms and pipelines. The ship inspection system is developed by combining several attributes. Then, decision analysis software is employed to prioritize the vessel’s four attributes, including ship age, ship type, classification, and flag state. Results show that the EWS can increase the safety level of offshore platforms and pipelines, as well as the efficient use of patrol boats in monitoring the safety of the facilities. Meanwhile, ship inspection enables the port to prioritize the ship to be inspected in accordance with the priority ranking inspection score.

References:

Ariana M, Pitana T, Artana BK, Dinariyana B, Masroeri A (2013)Gaussian plume and puff model to estimate ship emission dispersion by combining automatic identification system (AIS) and geographic information system (GIS). J Mar Res 3(1):1-13
Artana K (2009) Penilaian resiko pipa gas bawah laut Ujung PangkahGresik dengan standard DNV RP F107. Jurnal Teknik Mesin 9(1):28-42 (In Indonesian)
Artana K, Dinariyana D, Masroeri A, Pitana T (2011) Combining AIS data and fuzzy clustering to measure danger score of ships. J Mar Res 1(1):33-41
Artana K, Dinariyana A, Ariana I, Sambodho K (2013) Penilaian risiko pipa gas bawah laut. Guna Widya Publisher, Surabaya, pp 123-133(in Indonesian)
Artana K, Pratiwi E, Dinariyana DP, Pitana T, Masreori AA, Ariana M, Arifin D (2014) Enhancement on methodology for estimating emission distribution at Madura Strait by integrating automatic identification system (AIS) and geographic identification system (GIS). Proceedings of the 3rd International Symposium of Maritime Sciences, Kobe, Japan
Artana K, Handani D, Sambodho K, Pratiwi E (2015) Risiko pipa gas bawah laut akibat pembangunan dan operasional dermaga.Conference of Badan Inovasi Bisnis dan Ventura (BIBV) ITS, Surabaya, Indonesia (In Indonesian)
Bukhari A, Tusseyeva I, Lee B, Kim Y (2013) An intelligent real-time multi-vessel collision risk assessment system. Expert Syst Appl 40(4):1220-1230. https://doi.org/10.1016/j.eswa.2012.08.016
Chen S, Rashid A, Lee B, Kim D (2014) Composition ship collision risk based on fuzzy theory, vol 21. Central South University Press and Springer-Verlag, Berlin, Heidelberg, pp 4296-4302. https://doi.org/10.1007/s11771-014-2428-z
Dinariyana A, Setyorini P, Masroeri AA, Antara D (2015) Penilaian risiko pipa dan kabel bawah laut akibat penggunaan mooring vessel pada proses pemasangan tie-in spool. Proceeding of Seminar Nasional Kelautan X, Univ. Surabaya (In Indonesian)
Goerlandt F, Montewka J, Kuzmin V, Kujala P (2015) A risk-informed ship collision alert system:framework and application. Saf Sci 77:182-204. https://doi.org/10.1016/j.ssci.2015.03.015
Gong IY (2002) The development of a supporting system for safe navigation on a basis of a risk. 3rd Research Report (Development of a core technology for a risk reduction)
IMO (1998) Annex 3, recommendation on performance standards for an universal shipborne automatic identification systems (AIS), IMO resolution MSC.74(69). International Maritime Organization, London
ITU-R (2014) ITU Telecommunication Standardization Sector., available from M.1371-5, Technical characteristics for an automatic identification system using time division multiple access in the VHF maritime mobile frequency band:http://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1371-5-201402-I!!PDF-E.pdf[Accessed 11 Aug 2016]
Kobayashi E, Wakabayashi N, Makino H, Ishida K, Pitana T, Hwang S (2010) Installation of an Asian AIS data receiving system network.Proceeding of Japan Institute of Navigation, Tokyo, Japan
Mahkamah Pelayaran Indonesia (2009) Rekapitulasi data kecelakaan kapal. Pusat Data dan Informasi, Sekretariat Jenderal -Kementerian Perhubungan, Jakarta (in Indonesian)
Masroeri AA, Artana KB, Pitana T, Dinariyana D (2012) A review on some research issues on AIS to improve the ship safety operation at sea. J Mar Res 2(1):11-23
Menteri Perhubungan Republik Indonesia (2011) Alur-Pelayaran di Laut.Retrieved from dephub.go.id:http://tinyurl.com/pm-no-68-tahun-2011-pdf (in Indonesian)
Pitana T, Kobayashi E, Syunichi K, Onoda K, Rusman (2008) A large passenger ship evacuation assessment due to tsunami attack. J Jpn Soc Nav Archit Ocean Eng 8:195-207
Pitana T, Kobayashi E, Wakabayashi N (2010) Estimation of exhaust emission of marine traffic using automatic identification system data(case study:Madura Strait Area, Indonesia). OCEANS 2010 LEEE Sydney 24-27 May 2010, CFP100CF-CDR 978-1-4244-5222.Library of Congress, 2009934926
Pitana T, Dinariyana A, Artana BK, Zaman M, Persada H (2011) Development of hazard navigation map by using AIS data. J Mar Res 1(1):43-52
Pitt C (2015) Multi-process PHP. Available from https://medium.com/async-php/multi-process-php-94a4e5a4be05#.py8liwfi7[Accessed 12 Aug 2016]
Pratiwi E, Artana K, Dinariyana A, Setyorini P (2016) Aplikasi automatic identification system (AIS) untuk menentukan risk collision kapal berdasarkan fuzzy inference system. Proceeding of Seminar Nasional Kelautan X Universitas Hang Tuah, Surabaya, Indonesia(in Indonesian)
Saaty LT (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83-98. https://doi.org/10.1504/IJSSCI.2008.017590
Su CM, Chang KY, Cheng CY (2012) Fuzzy decision on optimal collision avoidance measures for ships in vessel traffic service. J Mar Sci Technol 20(1):38-48
Sunday D (2015) Lines and distance of a point to a line. Available from http://geomalgorithms.com/a02-_lines.html[Accessed 11 Aug 2016]
Tokyo MOU (2009) Annual report on port state control in the AsiaPacific region 2009. The Tokyo MOU, Tokyo

Memo

Memo:
Received date:2016-09-08;Accepted date:2016-12-31。
Corresponding author:K. B. Artana, ketutbuda@its.ac.id
Last Update: 2018-10-11