|Table of Contents|

 Parviz Ghadimi,Alireza Bolghasi and Mohammad A. Feizi Chekab.Sea Surface Effects on Sound Scattering in the Persian Gulf Region Based on Empirical Relations[J].Journal of Marine Science and Application,2015,(2):113-125.[doi:10.1007/s11804-015-1306-x]
Click and Copy

Sea Surface Effects on Sound Scattering in the Persian Gulf Region Based on Empirical Relations


Sea Surface Effects on Sound Scattering in the Persian Gulf Region Based on Empirical Relations
Parviz Ghadimi Alireza Bolghasi and Mohammad A. Feizi Chekab
Parviz Ghadimi Alireza Bolghasi and Mohammad A. Feizi Chekab
Department of Marine Technology, Amirkabir University of Technology, Tehran 15875-4413, Iran
surface scattering strength scattered intensity sea surface effects Persian Gulf sound scattering empirical relation perturbation theory
In this paper, sound scattering from the sea surface in the Persian Gulf region is investigated. Chapman-Harris and Ogden-Erskine empirical relations coupled with perturbation theory are implemented. Based on the Ogden and Erskine’s experiments, sound scattering from the sea surface has three different regimes in which two mechanisms of surface roughness and subsurface bubble clouds are involved. Ogden-Erskine’s scattering relation which consists of perturbation theory and Chapman-Harris’s scattering terms are verified by the experimental data of Critical Sea Tests 7. Subsequently, wind speed in the Persian Gulf is provided based on three data bases of Arzanah station, ERA40, and PERGOS. Accordingly, surface scattering strength in the Persian Gulf region is calculated at different grazing angles, frequencies and provided wind speeds. Based on the resulted values of scattering strength, scattered intensity from the sea surface is also studied. These studies indicate that both scattering strength and scattered intensity generally increase as grazing angle, frequency and wind speed increase.


Ainslie MA (2005). Effect of wind-generated bubbles on fixed range acoustic attenuation in shallow water at 1-4 kHz. J. Acoust. Soc. Amer., 118 (6), 3513-3523.
   DOI: 10.1121/1.2114527
Akal T, Berkson, JM (1986). Ocean seismo-acoustics: low-Frequency underwater acoustics. NATO Conference Series IV, Marine Sciences, Vol. 16. Plenum, New York.
Andreeva IB, Volkova AV, Galybin NN (1980). Backscattering of sound by the sea surface at small grazing angles. Sov. Phys. Acoust., 26, 265-268.
Bass FG (1960). Boundary conditions for the average electromagnetic field on a surface with random irregularities and with impedance fluctuations. Izv. Vuzov, Radio Fizika, 3, 72-78.
Brekhovskikh LM, Lysanov YP (2003). Fundamentals of Ocean Acoustics. Press, Springer.
Brown MV, and Saenger RA (1972). Bi-static backscattering of low-frequency underwater sound from the ocean surface. J. Acoust. Soc. Am., 52, 944-960.
    DOI: 10.1121/1.1913201
Calvo DC, Nicholas M, Orris GJ (2013). Experimental verification of enhanced sound transmission from water to air at low frequencies. J. Acoust. Soc. Am., 134 (5), 3403-3408.
    DOI: 10.1121/1.4822478
Chapman RP, Harris JH (1962). Surface backscattering strengths measured with explosive sound sources. J. Acoust. Soc. Am., 34, 1592-1597.
    DOI: 10.1121/1.1909057
Chapman RP, Scott HD (1964) Surface backscattering strengths measured over an extended range of frequencies and grazing angles. J. Acoust. Soc. Am., 36, 1735-1737.
    DOI: 10.1121/1.1919274
Deane GB, Preisig JC, Lavery AC (2013). The suspension of large bubbles near the sea surface by turbulence and their role in absorbing forward-scattered sound. IEEE J. Ocean. Eng., 38 (4).
    DOI: 10.1109/JOE.2013.2257573
Diachok O (1999). Effects of absorptivity due to fish on transmission loss in shallow water. J. Acoust. Soc. Amer., 105(4), 2107-2128.
    DOI: 10.1121/1.417625
Dol HS, Colin MEGD, Ainslie MA, van Walree PA, Janmaat J (2013). Simulation of an underwater acoustic communication channel characterized by wind-generated surface waves and bubbles. IEEE J. Ocean. Eng., 38(4).
Duro V, Rajaona DR, Decultot D, Maze G (2011). Experimental study of sound propagation trough bubbly water: comparison with optical measurements. IEEE J. Ocean. Eng., 36 (1), 114-125.
    DOI: 10.1109/JOE.2010.2096971
Eckart C (1953). The scattering of sound from the sea surface. J. Acoust. Soc. Am., 25 (3), 566-570.
    DOI: 10.1121/1.1907123
ECMWF website (2009). http://www.ECMWF.int/products/data.
Eggen TH, Baggeroer AB, Preisig JC (2000). Communication over Doppler spread channels—Part I: Channel and receiver presentation. IEEE J. Ocean. Eng., 25 (1), 62-71.
    DOI: 10.1109/48.820737
Eller AI (1984). Findings and recommendations of the surface loss modelworking group: final report, 1984. Nav. Ocean Res. Devel. Activity, Tech.Note 279.
Etter PC (2003). Underwater acoustic modeling and simulation. Third ed., Spon Press, London and New York.
Farmer DM, Deane GB, Vagle S (2001). The influence of bubble clouds on acoustic propagation in the surf zone. IEEE J. Ocean. Eng., 26(1), 113-124.
    DOI: 10.1109/48.917943
Fortuin L (1970). Survey of literature on reflection and scattering of sound waves at the sea surface. J. Acoust. Soc. Am., 47, 1209-1228.
    DOI: 10.1121/1.1912022 Frisk GV (1994). Ocean and seabed acoustics: A theory of wave propagation. PTR Prentice-Hall, Englewood Cliffs, USA.
Ghadimi P, Bolghasi A, Feizi CMA (2014). acoustic simulation of scattering sound from a more realistic sea surface: consideration of two practical underwater sound sources. Journal of the Brazilian Society of Mechanical Sciences and Engineering.
    DOI: 10.1007/s40430-014-0285-1
Godin OA (2008a). Sound transmission through water-air interfaces: new insights into an old problem. Contemp. Phys., 49(2), 105-123.
    DOI: 10.1080/00107510802090415
Godin OA (2008b). Low-frequency sound transmission through a gas-liquid interface. J. Acoust. Soc. Am., 123(4), 1866-1879.
    DOI: 10.1121/1.2874631
Golshani A (2010). Wave properties in Persian Gulf according to SWAN model. Journal of Marine Engineering, 6(12), 73-87. (in Persian)
Hall MV (1989). A comprehensive model of wind-generated bubbles in the ocean and predictions of the effects on sound propagation at frequencies up to 40 kHz. J. Acoust. Soc. Am., 86, 1103-1117.
    DOI: 10.1121/1.398102
Holliday DV, Pieper RE, Klepple GS (1995). Bioacoustical oceanography at high frequencies. ICES J. Mar. Sci., 52 (3-4), 279-296.
    DOI: 10.1016/1054-3139
Huang SH, Tsao J, Yang TC, Cheng SW (2013). Model-based signal subspace channel tracking for correlated underwater acoustic communication channels. IEEE J. Ocean. Eng.,
    DOI: 10.1109/ JOE.2013.2251808.
Jornet JM, Stojanovic M, Zorzi M (2010). On joint frequency and power allocation in a cross-layer protocol for underwater acoustic networks. IEEE J. Ocean. Eng., 35(4), 936-947.
    DOI: 10.1109/JOE.2010.2080410
Karjadi EA, Badiey M, Kirby JT, Bayindir C (2012). The effects of surface gravity waves on high-frequency acoustic propagation in shallow water. IEEE J. Ocean. Eng., 37(1), 112-121.
    DOI: 10.1109/JOE.2011.2168670
Kinsler LE, Frey AR, Coppens AB, Sanders JV (1982). Fundamentals of Acoustics. 3rd ed., John Wiley & Sons, New York.
Kuo EYT (1988). Sea surface scattering and propagation loss: review, update, and new predictions. IEEE J. Ocean. Eng., 13, 229-234.
    DOI: 10.1109/48.9235
Leighton TG (1994). The acoustic bubble. Academic Press, San Diego.
Marsh HW (1961). Exact solution of wave scattering by irregular surfaces. J. Acoust. Soc. Am., 33, 330-333.
McDaniel ST (1993). Sea surface reverberation: a review. J. Acoust. Soc. Am., 94(4), 1905-1922.
    DOI: 10.1121/1.407514
Medwin H, Clay CS (1998). Fundamentals of Acoustical Oceanography. 2nd ed., Academic Press, Boston.
NOAA website (2009). http://www.cdc.noaa.gov/data/.
Ocean Weather website (2009). http://www.oceanweather.com/metocean/.
Ogden PM, Erskine FT (1994a). Surface scattering measurements using broadband in the explosive charges Critical Sea Test experiments. J. Acoust. Soc. Am., 95, 746-761.
    DOI: 10.1121/1.411300
Ogden PM, Erskine FT (1994b). Surface scattering measurements using broadband in the explosive charges Critical Sea Test 7 experiments. J. Acoust. Soc. Am., 96, 2908-2920.
    DOI: 10.1121/1.411300
PODAAC QuikSCAT website (2009). http://podaac.jpl.nasa.gov/quikscat/.
Polprasert C, Ritcey JA, Stojanovic M (2011). Capacity of OFDM systems over fading underwater acoustic channels. IEEE J. Ocean. Eng., 36(4), 514-524.
    DOI: 10.1109/JOE.2011.2167071
Porter MB (1993). Acoustic models and sonar systems. IEEE J. Ocean. Eng., 18(4), 425-437.
    DOI: 10.1109/48.262293
Roux P, Culver RL, Walker S (2010). Application of the coherent-to-incoherent intensity ratio to estimation of ocean surface roughness from high-frequency, shallow-water propagation measurements. J. Acoust. Soc. Amer., 127(3), 1258-1266.
    DOI: 10.1121/1.3294493
Sharif BS, Neasham J, Hinton OR, Adams AE (2000). A computationally efficient Doppler compensation system for underwater acoustic communications. IEEE J. Ocean. Eng., 25(1), 52-61.
    DOI: 10.1109/48.820736
Song A, Badiey M, Newhall AE, Lynch JF, DeFerrari HA, Katsnelson BG (2010). Passive time reversal acoustic communications through shallow-water internal waves. IEEE J. Ocean. Eng., 35(4), 756-765.
    DOI: 10.1109/JOE.2010.2060530
Urick RJ, Hoover RM (1956). Backscattering of Sound from the Sea Surface: Its Measurement, Causes, and Application to the Prediction of Reverberation Levels. J. Acoust. Soc. Am., 28, 1038-1043.
    DOI: 10.1121/1.1908547
Urick RJ (1979). Sound Propagation in the Sea. US Government Printing Office, Washington, DC.
van Walree PA (2013). Propagation and scattering effects in underwater acoustic communication channels. IEEE J. Ocean. Eng., 38, 614-631.
    DOI: 10.1109/JOE.2013.2278913
van Moll CAM, Ainslie MA, van Vossen R (2009). A simple and accurate formula for the absorption of sound in seawater. IEEE J. Ocean. Eng., 34(4), 610-616.
    DOI: 10.1109/JOE.2009.2027800.
Yang TC (2012). Properties of underwater acoustic communication channels in shallow water. J. Acoust. Soc. Amer., 131(1), 129-145.
    DOI: 10.1121/1.3664053
Yerramalli S, Mitra U (2011). Optimal resampling of OFDM signals for multiscale-multilag underwater acoustic channels. IEEE J. Ocean. Eng., 36(1), 126-138.
    DOI: 10.1109/JOE.2010.2093752
Zhang Z (2011). Spectral Decomposition Using S-transform for Hydrocarbon Detection and Filtering. Master thesis, Texas A&M University, College Station, USA.


Received date:2014-8-15.      Accepted date: 2014-12-29.
Corresponding author: Parviz Ghadimi    E-mail:pghadimi@aut.ac.ir
Last Update: 2016-06-23