[1] Ahmed F, Huang HL, Ahmed S, Wang X (2020) A comprehensive review on modeling and performance optimization of Stirling engine. International Journal of Energy Research 44: 6098-6127. https://doi.org/10.1002/er.5214
[2] Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF (2005) Oxyfuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science 31: 283-307. https://doi.org/10.1016/j.pecs.2005.07.001
[3] Campos MC, Vargas JVC, Ordonez JC (2012) Thermodynamic optimization of a Stirling engine. Energy 44: 902-910. https://doi.org/10.1016/j.energy.2012.04.060
[4] Cardozo E, Erlich C, Malmquist A, Alejo L (2014) Integration of a wood pellet burner and a Stirling engine to produce residential heat and power. Applied Thermal Engineering 73: 671-680. https://doi.org/10.1016/j.applthermaleng.2014.08.024
[5] Cheng CH, Huang JS (2021) Development of tri-generation system combining Stirling cooler and Stirling engine. International Journal of Energy Research 45: 21006-21022. https://doi.org/10.1002/er.7159
[6] Costea M, Feidt M (1998) The effect of the overall heat transfer coefficient variation on the optimal distribution of the heat transfer surface conductance or area in a Stirling engine. Energy Conversion and Management 39: 1753-1761. https://doi.org/10.1016/s0196-8904(98)00063-6
[7] Deng Y, Li J, EE (2022) Emerging roles of liquid metals in carbon neutrality. Frontiers in Energy 16: 393-396. https://doi.org/10.1007/s11708-022-0829-5
[8] Gao G, Huang H, Yang Y, Damu A (2019) Performance simulation of a low-swirl burner for a Stirling engine. International Journal of Energy Research 43: 1815-1826. https://doi.org/10.1002/er.4407
[9] Ghamari I, Mahmoudi HR, Hajivand A, Seif MS (2022) Ship roll analysis using CFD-derived roll damping: Numerical and experimental study. Journal of Marine Science and Application 21: 67-79. https://doi.org/10.1007/s11804-022-00254-1
[10] Gheith R, Hachem H, Aloui F, Ben Nasrallah S (2015) Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization. Energy Conversion and Management 105: 285-293. https://doi.org/10.1016/j.enconman.2015.07.063
[11] Hachem H, Gheith R, Aloui F, Ben Nasrallah S (2018) Technological challenges and optimization efforts of the Stirling machine: A review. Energy Conversion and Management 171: 1365-1387. https://doi.org/10.1016/j.enconman.2018.06.042
[12] Hafez AZ, Soliman A, El-Metwally KA, Ismail IM (2016) Solar parabolic dish Stirling engine system design, simulation, and thermal analysis. Energy Conversion and Management 126: 60-75. https://doi.org/10.1016/j.enconman.2016.07.067
[13] Hong J, Chaudhry G, Brisson JG, Field R, Gazzino M, Ghoniem AF (2009) Analysis of Oxy-fuel combustion power cycle utilizing a pressurized coal combustor. Energy 34: 1332-1340. https://doi.org/10.1016/j.energy.2009.05.015
[14] Jia JB, Zong Z (2022) Experimental study on the configuration hydrodynamics of trimaran ships. Journal of Marine Science and Application 21: 46-55. https://doi.org/10.1007/s11804-022-00281-y
[15] Kazemi H, Doustdar MM, Najafi A, Nowruzi H, Ameri MJ (2021) Hydrodynamic performance prediction of stepped planing craft using CFD and ANNs. Journal of Marine Science and Application 20: 67-84. https://doi.org/10.1007/s11804-020-00182-y
[16] Kongtragool B, Wongwises S (2003) A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renewable & Sustainable Energy Reviews 7: 131-154. https://doi.org/10.1016/s1364-0321(02)00053-9
[17] Kongtragool B, Wongwises S (2007) Performance of a twin power piston low temperature differential Stirling engine powered by a solar simulator. Solar Energy 81: 884-895. https://doi.org/10.1016/j.solener.2006.11.004
[18] Li LJ, Zhao BB, Sun BK (2023) Surface waves induced by a moving submarine model. Journal of Marine Science and Application 22: 84-91. https://doi.org/10.1007/s11804-023-00318-w
[19] Li S, Ju Y (2022) Review of the LNG intermediate fluid vaporizer and its heat transfer characteristics. Frontiers in Energy 16: 429-444. https://doi.org/10.1007/s11708-021-0747-y
[20] Mancini T, Heller P, Butler B, Osborn B, Schiel W, Goldberg V, Buck R, Diver R, Andraka C, Moreno J (2003) Dish-Stirling systems: An overview of development and status. Journal of Solar Energy Engineering-Transactions of the ASME 125: 135-151. https://doi.org/10.1115/1.1562634
[21] Nagao J, Pillai AL, Kurose R (2020) Investigation of temporal variation of combustion instability intensity in a back step combustor using LES. Journal of Thermal Science and Technology 15: 36-37. https://doi.org/10.1299/jtst.2020jtst0036
[22] Nishiyama A, Shimojima H, Ishikawa A, Itaya Y, Kambara S, Moritomi H, Mori S (2007) Fuel and emissions properties of stirling engine operated with wood powder. Fuel 86: 2333-2342. https://doi.org/10.1016/j.fuel.2007.01.040
[23] Petrescu S, Costea M, Harman C, Florea T (2002) Application of the Direct Method to irreversible Stirling cycles with finite speed. International Journal of Energy Research 26: 589-609. https://doi.org/10.1002/er.806
[24] Rizk MA, Belhenniche SE, Imine O, Kinaci OK (2023) Cavitation predictions of E779A propeller by a RANSE-based CFD and its performance behind a generic hull. Journal of Marine Science and Application 22: 273-283. https://doi.org/10.1007/s11804-023-00342-w
[25] Solomon L, Qiu S (2018) Computational analysis of external heat transfer for a tubular Stirling convertor. Applied Thermal Engineering 137: 134-141. https://doi.org/10.1016/j.applthermaleng.2018.03.070
[26] Song Z, Chen J, Yang L (2015) Heat transfer enhancement in tubular heater of Stirling engine for waste heat recovery from flue gas using steel wool. Applied Thermal Engineering 87: 499-504. https://doi.org/10.1016/j.applthermaleng.2015.05.028
[27] Thombare DG, Verma SK (2008) Technological development in the Stirling cycle engines. Renewable & Sustainable Energy Reviews 12: 1-38. https://doi.org/10.1016/j.rser.2006.07.001
[28] Tu YJ, Liu H, Chen S, Liu ZH, Zhao HB, Zheng CG (2015) Numerical study of combustion characteristics for pulverized coal under Oxy-MILD operation. Fuel Processing Technology 135: 80-90. https://doi.org/10.1016/j.fuproc.2014.10.025
[29] Xia F, Yang Z, Adeosun A, Gopan A, Kumfer BM, Axelbaum RL (2016) Pressurized Oxy-combustion with low flue gas recycle: Computational fluid dynamic simulations of radiant boilers. Fuel 181: 1170-1178. https://doi.org/10.1016/j.fuel.2016.04.023
[30] Xiao G, Chen C, Shi B, Cen K, Ni M (2014) Experimental study on heat transfer of oscillating flow of a tubular Stirling engine heater. International Journal of Heat and Mass Transfer 71: 1-7. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.010
[31] Yan W, Dong J, Ren H (2012) Economic analysis of the power station with pressurized Oxy-fuel combustion and CO2 capture. Journal of Power Engineering 32: 712-717
[32] Zhang H, Gowing T, Degreve J, Leadbeater T, Baeyens J (2016) Use of particle heat carriers in the Stirling engine concept. Energy Technology 4: 401-408. https://doi.org/10.1002/ente.201500274
[33] Zhang WC, Wu LH, Jiang XW, Feng XS, Li YP, Zeng JB, Liu CD (2022) Propeller design for an autonomous underwater vehicle by the lifting-line method based on OpenProp and CFD. Journal of Marine Science and Application 21: 106-114. https://doi.org/10.1007/s11804-022-00275-w