[1] Asl NA, Menhaj BM, Sajedin A (2013) Control of leader-follower formation and path planning of mobile robots using Asexual Reproduction Optimization (ARO). Applied Soft Computing Journal 14: 563-576. DOI: 10.1016/j.asoc.2013.07.030
[2] Bucas G, Saliot A (2002) Sea transport of animal and vegetable oils and its environmental consequences. Marine Pollution Bulletin 44(12): 1388-1396. DOI: 10.1016/S0025-326X(02)00303-X
[3] Chu Y (2022) Research on the formation control method of dual unmanned surface vehicle for oil spill containment. Master thesis, Harbin Engineering University, Harbin
[4] Drake D, Koziol S, Chabot E (2018) Mobile robot path planning with a moving goal. IEEE Access 6: 12800-12814. DOI: 10.1109/access.2018.2797070
[5] Duan H, Ma G, Luo D (2008) Optimal formation reconfiguration control of multiple UCAVs using improved particle swarm optimization. Journal of Bionic Engineering 5(4):340-347. DOI: 10.1016/S1672-6529(08)60179-1
[6] Giron-Sierra JM, Gheorghita AT, Angulo G, Jimenez JF (2014) Preparing the automatic spill recovery by two unmanned boats towing a boom: Development with scale experiments. Ocean Engineering 95(1): 23-33. DOI: 10.1016/j.oceaneng.2014.11.034
[7] Han L (2021) Multiphase sequence search based on simulated annealing algorithm. Yangtze River Information and Communication 34(2): 52-55. DOI: 10.3969/j.issn.1673-1131.2021.02.017
[8] Hao Y, Agrawal K (2005) Planning and control of UGV formations in a dynamic environment: A practical framework with experiments. Robotics and Autonomous Systems 51(2-3): 101-110. DOI: 10.1016/j.robot.2005.01.001
[9] Jiang W (2020) Research on cooperative planning and control method of double unmanned surface vehicle for oil spill roundup. Master thesis, Harbin Engineering University, Harbin
[10] Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research 5(1): 90-98. DOI: 10.1177/027836498600500106
[11] Lee M, Jung J (2015) Pollution risk assessment of oil spill accidents in Garorim Bay of Korea. Marine Pollution Bulletin 100(1): 297-303. DOI: 10.1016/j.marpolbul.2015.08.037
[12] Li Y, Zhang S, Chai L (2023) Cooperative obstacle avoidance trajectory planning for mobile robotic arm based on artificial potential field DDPG algorithm. Computer Integrated Manufacturing Systems: 1-15
[13] Liao Y (2012) Research on nonlinear motion control method of unmanned vehicle. PhD thesis, Harbin Engineering University, Harbin
[14] Liao Y, Jiang Q, Du T, Jiang W (2019) Redefined output model-free adaptive control method and unmanned surface vehicle heading control. IEEE Journal of Oceanic Engineering 45(3): 714-723. DOI: 10.1109/joe.2019.2896397
[15] Liu N, Tan Y, Mo W, Han H, Li L (2021) Optimization design of halbach linear generator based on simulated annealing algorithm. Transactions of China Electrotechnical Society 36(6): 1210-1218. DOI: 10.19595/j.cnki.1000-6753.tces.200442
[16] Liu T, Tian S (2006) Treatment of oil spill at sea and future development trend. China Water Transportation (Theoretical Edition) 4(11): 27-29
[17] Liu X, Dou Y (2021) Research on obstacle avoidance of small cruise vehicle based on improved artificial potential field method. Journal of Physics: Conference Series 1965(1): 12-24. DOI: 10.1088/1742-6596/1965/1/012036
[18] Liu Y, Richard B (2016) The angle guidance path planning algorithms for unmanned surface vehicle formations by using the fast marching method. Applied Ocean Research 59: 327-344. DOI: 10.1016/j.apor.2016.06.013
[19] Manley JE (2008) Unmanned surface vehicles, 15 years of development. OCEANS MTS/IEEE, Quebec City, Canada, 1-4. DOI: 10.1109/OCEANS.2008.5152052
[20] Orozco-Rosas U, Montiel O, Sepúlveda R (2019) Mobile robot path planning using membrane evolutionary artificial potential field. Applied Soft Computing Journal 77: 236-251. DOI: 10.1016/j.asoc.2019.01.036
[21] Orozco-Rosas U, Picos K, Pantrigo JJ, Montemayor AS, Cuesta-Infante A (2022) Mobile robot path planning using a QAPF learning algorithm for known and unknown environments. IEEE Access 10: 84648-84663. DOI: 10.1109/ACCESS.2022.3197628
[22] Qu H, Xing K, Alexander T (2013) An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots. Neurocomputing 120: 509-517. DOI: 10.1016/j.neucom.2013.04.020
[23] Sang H, You Y, Sun X, Zhou Y, Liu F (2021) The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations. Ocean Engineering 223: 108709. DOI: 10.1016/j.oceaneng.2021.108709
[24] Sun L, Fu Z, Tao F, Si P, Song S (2022) Research on obstacle avoidance algorithm for intelligent vehicles with improved artificial potential field. Journal of Henan University of Science & Technology (Natural Science) 43(5): 28-34+41+5-6. DOI: 10.15926/j.cnki.issn1672-6871.2022.05.005
[25] Tan G, Zou J, Zhuang J, Wan L, Sun H, Sun Z (2020) Fast marching square method based intelligent navigation of the unmanned surface vehicle swarm in restricted waters. Applied Ocean Research 95: 102018. DOI: 10.1016/j.apor.2019.102018
[26] Wang Y (2015) Research on path planning technology of unmanned boat formation based on fast marching method. Master thesis, Harbin Engineering University, Harbin
[27] Yu WQ, Lu YG (2021) UAV 3D environment obstacle avoidance trajectory planning based on improved artificial potential field method. Journal of Physics: Conference Series 1885(2): 20-22. DOI: 10.1088/1742-6596/1885/2/022020
[28] Yuan C, Weng S, He Y, Shen J, He L, Wang T (2019) Research on integrated path planning decision algorithm based on improved artificial potential field method. Transactions of the Chinese Society for Agricultural Machinery 50(9): 394-403. DOI: 10.6041/j.issn.1000-1298.2019.09.046
[29] Zang Y, Xu Z, Huang A, Ai S, Xia H, Kan R (2021) Reconstruction of heterogeneous combustion field distribution based on improved simulated annealing algorithm. Acta Physica Sinica 70(13): 229-240. DOI: 10.7498/aps.70.20202124
[30] Zhang M, Zhang Q, Wang Y, Ding Z (2020) A review of research on waterborne oil spill recovery ship. Journal of Qingdao Ocean Shipping Mariners College 41(1): 35-41. DOI: 10.3969/j.issn.2095-3747.2020.01.008
[31] Zheng H, Long M, Su H, Wang H (2021) Cooperative formation of aircraft and boats Combined with Virtual Structure and Artificial Potential Field. Proceedings of the 40th Chinese Control Conference, Shanghai 15: 634-639. DOI: 10.26914/c.cnkihy.2021.029286