[1] Baarholm GS, Moan T (2000) Estimation of nonlinear long-term extremes of hull girder loads in ships. Marine Structures 13(6): 495-516. https://doi.org/10.1016/s0951-8339(00)00060-5
[2] Battjes JA (1972) Long-term wave height distributions at seven stations around the British Isles. Deutsche Hydrographische Zeitschrift 25(4): 179-189. https://doi.org/10.1007/bf02312702
[3] Beshbichi OE, R?dst?l H, Xing Y, Ong MC (2022) Prediction of long-term extreme response of two-rotor floating wind turbine concept using the modified environmental contour method. Renewable Energy 189: 1133-1144. https://doi.org/10.1016/j.renene.2022.02.119
[4] Bruserud K, Haver S, Myrhaug D (2018) Joint description of waves and currents applied in a simplified load case. Marine Structures 58: 416-433. https://doi.org/10.1016/j.marstruc.2017.12.010
[5] Castellon DF, Fenerci A, ?iseth O, Petersen ?W (2022) Investigations of the long-term extreme buffeting response of longspan bridges using importance sampling Monte Carlo simulations. Engineering Structures 273: 114986-114986. https://doi.org/10.1016/j.engstruct.2022.114986
[6] Chen DS, Feng XY, Li ZQ, Chen JF (2023) Long-term extreme responses of torsional moments at two-directional hinges for moored very large floating structures. Ocean Engineering 290: 116330-116330. https://doi.org/10.1016/j.oceaneng.2023.116330
[7] Clarindo G, Guedes Soares C (2024) Environmental contours of sea states by the I-FORM approach derived with the Burr-Lognormal statistical model. Ocean Engineering 291: 116315. https://doi.org/10.1016/j.oceaneng.2023.113959
[8] Du X, Sudjianto A, Chen W (2004) An integrated framework for optimization under uncertainty using inverse reliability strategy. Journal of Mechanical Design 126(4): 562-570. https://doi.org/10.1115/1.1759358
[9] Ewans K, Jonathan P (2014) Evaluating environmental joint extremes for the offshore industry using the conditional extremes model. Journal of Marine Systems 130: 124-130. https://doi.org/10.1016/j.jmarsys.2013.03.007
[10] Farnes KA, Moan T (1993) Extreme dynamic, non-linear response of fixed platforms using a complete long-term approach. Applied Ocean Research 15(6): 317-326. https://doi.org/10.1016/0141-1187(93)90001-e
[11] Fontaine E, Orsero P, Ledoux A, Nerzic R, Prevosto M, Quiniou V (2013) Reliability analysis and response based design of a moored FPSO in West Africa. Structural Safety 41: 82-96. https://doi.org/10.1016/j.strusafe.2012.08.002
[12] Giske FIG, Kv?le KA, Leira BJ, ?iseth O (2018) Long-term extreme response analysis of a long-span pontoon bridge. Marine Structures 58: 154-171. https://doi.org/10.1016/j.marstruc.2017.11.010
[13] Giske FIG, Leira BJ, ?iseth O (2017) Full long-term extreme response analysis of marine structures using inverse FORM. Probabilistic Engineering Mechanics 50: 1-8. https://doi.org/10.1016/j.probengmech.2017.10.007
[14] Haver S (1985) Wave climate off northern Norway. Applied Ocean Research 7(2): 85-92. https://doi.org/10.1016/0141-1187(85)90038-0
[15] Haver S, Winterstein SR (2008) Environmental contour lines: A method for estimating long term extremes by a short term analysis. Transactions-Society of Naval Architects and Marine Engineers. 116: 116-127 https://doi.org/10.5957/smc-2008-067
[16] Krogstad HE (1985) Height and period distributions of extreme waves. Applied Ocean Research 7(3): 158-165. https://doi.org/10.1016/0141-1187(85)90008-2
[17] Li H, Foschi RO (1998) An inverse reliability method and its application. Structural Safety 20(3): 257-270. https://doi.org/10.1016/s0167-4730(98)00010-1
[18] Li L, Yuan ZM, Gao Y, Zhang XS, Tezdogan T (2019) Investigation on long-term extreme response of an integrated offshore renewable energy device with a modified environmental contour method. Renewable Energy 132: 33-42. https://doi.org/10.1016/j.renene.2018.07.138
[19] Li Q, Gao Z, Moan T (2017) Modified environmental contour method to determine the long-term extreme responses of a semi-submersible wind turbine. Ocean Engineering 142: 563-576. https://doi.org/10.1016/j.oceaneng.2017.07.038
[20] Liao ZK, Zhao YL, Dong S (2022). Estimating design loads for floating structures using environmental contours. Journal of Marine Science and Application 21(3): 114-127. https://doi.org/10.1007/s11804-022-00282-x
[21] Longuet-Higgins MS (1975) On the joint distribution of the periods and amplitudes of sea waves. Journal of Geophysical Research 80(18): 2688-2694. https://doi.org/10.1029/jc080i018p02688
[22] Lystad TM, Fenerci A, ?iseth O (2020) Buffeting response of longspan bridges considering uncertain turbulence parameters using the environmental contour method. Engineering Structures 213: 110575. https://doi.org/10.1016/j.engstruct.2020.110575
[23] Mackay E, Hauteclocque GD (2023) Model-free environmental contours in higher dimensions. Ocean Engineering 273: 113959-113959. https://doi.org/10.1016/j.oceaneng.2023.113959
[24] Naess A (1984) Technical note: On the long-term statistics of extremes. Applied Ocean Research 6(4): 227-228. https://doi.org/10.1016/0141-1187(84)90061-0
[25] Naess A, Moan T (2012) Stochastic dynamics of marine structures. Cambridge University Press, Cambridge. ISBN: 9781139021364
[26] Ochi MK (1998) Ocean waves: the stochastic approach. Cambridge University Press
[27] Sagrilo L, Naess A, Doria AS (2011) On the long-term response of marine structures. Applied Ocean Research 33(3): 208-214. https://doi.org/10.1016/j.apor.2011.02.005
[28] Vanem E (2016) Joint statistical models for significant wave height and wave period in a changing climate. Marine Structures 49: 180-205. https://doi.org/10.1016/j.marstruc.2016.06.001
[29] Vázquez-Hernández AO, Ellwanger GB, Sagrilo LVS (2011) Long-term response analysis of FPSO mooring systems. Applied Ocean Research 33(4): 375-383. https://doi.org/10.1016/j.apor.2011.05.003
[30] Wang YG (2020) A novel environmental contour method for predicting long-term extreme wave conditions. Renewable Energy 162: 926-933. https://doi.org/10.1016/j.renene.2020.08.112
[31] Winterstein SR, Ude TC, Cornell CA, Bjerager P, Haver S (1993) Environmental parameters for extreme response Inverse FORM with omission factors. ICOSSAR-93, Innsbruck, 551-557