|Table of Contents|

Citation:
 Haitong Xu,C. Guedes Soares.Review of System Identification for Manoeuvring Modelling of Marine Surface Ships[J].Journal of Marine Science and Application,2025,(3):459-478.[doi:10.1007/s11804-025-00681-w]
Click and Copy

Review of System Identification for Manoeuvring Modelling of Marine Surface Ships

Info

Title:
Review of System Identification for Manoeuvring Modelling of Marine Surface Ships
Author(s):
Haitong Xu C. Guedes Soares
Affilations:
Author(s):
Haitong Xu C. Guedes Soares
Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
Keywords:
Manoeuvring simulationSystem identificationManoeuvring modelManoeuvring test
分类号:
-
DOI:
10.1007/s11804-025-00681-w
Abstract:
A state-of-the-art review is presented of mathematical manoeuvring models for surface ships and parameter estimation methods that have been used to build mathematical manoeuvring models for surface ships. In the first part, the classical manoeuvring models, such as the Abkowitz model, MMG, Nomoto and their revised versions, are revisited and the model structure with the hydrodynamic coefficients is also presented. Then, manoeuvring tests, including both the scaled model tests and sea trials, are introduced with the fact that the test data is critically important to obtain reliable results using parameter estimation methods. In the last part, selected papers published in journals and international conferences are reviewed and the statistical analysis of the manoeuvring models, test data, system identification methods and environmental disturbances used in the paper is presented.

References:

[1] Abkowitz MA (1980) Measurement of hydrodynamic characteristics from ship maneuvering trials by system identification. SNAME Trans. 88: 283-318
[2] Araki M, Sadat-Hosseini H, Sanada Y, Tanimoto K, Umeda N, Stern F (2012) Estimating maneuvering coefficients using system identification methods with experimental, system-based, and CFD free-running trial data. Ocean Eng. 51: 63-84. DOI: 10.1016/J.OCEANENG.2012.05.001
[3] Ariza Ramirez W, Leong ZQ, Nguyen H, Jayasinghe SG (2018) Non-parametric dynamic system identification of ships using multi-output Gaussian Processes. Ocean Eng. 166: 26-36. DOI: 10.1016/J.OCEANENG.2018.07.056
[4] ?str?m KJ, K?llstr?m CG (1976) Identification of ship steering dynamics. Automatica 12: 9-22. DOI: 10.1016/0005-1098(76)90064-9
[5] Bai W, Ren J, Li T (2019a) Modified genetic optimization-based locally weighted learning identification modeling of ship maneuvering with full scale trial. Futur. Gener. Comput. Syst. 93: 1036-1045. DOI: 10.1016/J.FUTURE.2018.04.021
[6] Bai W, Ren J, Li T, Chen CLP (2019b) Grid index subspace constructed locally weighted learning identification modeling for high dimensional ship maneuvering system. ISA Trans. 86: 144-152. DOI: 10.1016/J.ISATRA.2018.11.001
[7] Banazadeh A, Ghorbani MT (2013) Frequency domain identification of the Nomoto model to facilitate Kalman filter estimation and PID heading control of a patrol vessel. Ocean Eng. 72: 344-355. DOI: 10.1016/J.OCEANENG.2013.07.003
[8] Bell JB, Tikhonov AN, Arsenin VY (1978) Solutions of Ill-Posed Problems. Math. Comput. 32: 1320-1322. DOI: 10.2307/2006360
[9] Bishop CM (1998) Neural networks and their applications. Rev. Sci. Instrum. 65: 1803. DOI: 10.1063/1.1144830
[10] Cao J, Zhuang J, Xu F, Yin J, Zou Z, Yu H, Xiao T, Yang L (2015) Parametric estimation of ship maneuvering motion with integral sample structure for identification. Appl. Ocean Res. 52: 212-221. DOI: 10.1016/j.apor.2015.06.007
[11] Casado MH, Ferreiro R (2005) Identification of the nonlinear ship model parameters based on the turning test trial and the backstepping procedure. Ocean Eng. 32: 1350-1369. DOI: 10.1016/J.OCEANENG.2004.11.003
[12] Chan TF, Hansen PC (1990) Computing truncated singular value decomposition least squares solutions by rank revealing QR-Factorizations. SIAM J. Sci. Stat. Comput. 11: 519-530. DOI: 10.1137/0911029
[13] Chen C, Tello Ruiz M, Delefortrie G, Mei T, Vantorre M, Lataire E (2019a) Parameter estimation for a ship’s roll response model in shallow water using an intelligent machine learning method. Ocean Eng. 191: 106479. DOI: 10.1016/j.oceaneng.2019.106479
[14] Chen C, Tello Ruiz M, Lataire E, Delefortrie G, Mansuy M, Mei T, Vantorre M (2019b) Ship Manoeuvring Model Parameter Identification Using Intelligent Machine Learning Method and the Beetle Antennae Search Algorithm. In: Ocean Engineering, American Society of Mechanical Engineers, Volume 7B. DOI: 10.1115/OMAE2019-95565
[15] Chen CZ, Liu SY, Zou ZJ, Zou L, Liu JZ (2023a) Time series prediction of ship maneuvering motion based on dynamic mode decomposition. Ocean Engineering 286: 115446. https://doi.org/10.1016/J.OCEANENG.2023.115446
[16] Chen L, Yang P, Li S, Liu K, Wang K, Zhou X (2023b) Online modeling and prediction of maritime autonomous surface ship maneuvering motion under ocean waves. Ocean Engineering 276: 114183. https://doi.org/10.1016/J.OCEANENG.2023.114183
[17] Chen L, Yang P, Li S, Tian Y, Liu G, Hao G (2022) Grey-box identification modeling of ship maneuvering motion based on LS-SVM. Ocean Engineering 266: 112957. https://doi.org/10.1016/J.OCEANENG.2022.112957
[18] Chislett MS, Strom-Tejsen J (1965) Planar motion mechanism tests and full-scale steering and manoeuvring predictions for a Mariner class vessel. Int. Shipbuild. Prog. 12: 201-224. DOI: 10.3233/ISP-1965-1212902
[19] Cortes C, Vapnik V (1995) Support-vector networks. Mach. Learn. 20: 273-297. DOI: 10.1023/A:1022627411411
[20] Costa AC, Xu H, Guedes Soares C (2021) Robust parameter estimation of an empirical manoeuvring model using free-running model tests. J. Mar. Sci. Eng. 9: 1302. DOI: 10.3390/JMSE9111302
[21] Crane Jr CL (1979) Maneuvering trials of the 278000 DWT ESSO OSAKA in shallow and deep waters. SNAME Trans 87: 87-251.
[22] Delefortrie G, Eloot K, Lataire E, Van Hoydonck W, Vantorre M (2016) Captive model tests based 6 DOF shallow water manoeuvring model. Proceedings of 4th MASHCON, Hamburg, Germany. DOI: 10.18451/978-3-939230-38-0
[23] Delefortrie G, Vantorre M (2021) 6DOF manoeuvring model of KCS with full roll coupling. Ocean Engineering 235: 109327
[24] Diez M, Serani A, Campana EF, Stern F (2022) Time-series forecasting of ships maneuvering in waves via dynamic mode decomposition. Journal of Ocean Engineering and Marine Energy 8(4): 471-478. https://doi.org/10.1007/S40722-022-00243-0/FIGURES/5
[25] Dong Q, Wang N, Song J, Hao L, Liu S, Han B, Qu K (2023) Math-data integrated prediction model for ship maneuvering motion. Ocean Engineering 285: 115255. https://doi.org/10.1016/J.OCEANENG.2023.115255
[26] Du P, Cheng L, Tang ZJ, Ouahsine A, Hu HB, Hoarau Y (2022) Ship maneuvering prediction based on virtual captive model test and system dynamics approaches. Journal of Hydrodynamics 34(2): 259-276. https://doi.org/10.1007/S42241-022-0029-0/METRICS
[27] Eloot K (2006) Selection, experimental determination and evaluation of a mathematical model for ship manoeuvring in shallow water. Ghent University, Ghent, Belgium
[28] El Moctar O, Lantermann U, Chillcce G (2022) An efficient and accurate approach for zero-frequency added mass for maneuvering simulations in deep and shallow water. Applied Ocean Research 126: 103259. https://doi.org/10.1016/J.APOR.2022.103259
[29] Fang MC, Tsai KY, Fang CC (2018) A simplified simulation model of ship navigation for safety and collision avoidance in heavy traffic areas. J. Navig. 71: 837-860. DOI: 10.1017/S0373463317000923
[30] Fan Y, Qiao S, Wang G, Chen S, Zhang H (2022) A modified adaptive Kalman filtering method for maneuvering target tracking of unmanned surface vehicles. Ocean Engineering 266: 112890. https://doi.org/10.1016/J.OCEANENG.2022.112890
[31] Fossen TI (2011) Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons, Ltd, Chichester, UK. DOI: 10.1002/9781119994138
[32] Fossen TI, Sagatun SI, S?rensen AJ (1996) Identification of dynamically positioned ships. Model. Identif. Control 17: 153-165. DOI: 10.4173/mic.1996.2.7
[33] Gavrilin S, Steen S (2018) Global sensitivity analysis and repeated identification of a modular maneuvering model of a passenger ferry. Appl. Ocean Res. 74: 1-10. DOI: 10.1016/J.APOR.2018.02.014
[34] Gavrilin S, Steen S (2015) Uncertainty of sea trials results used for validation of ship manoeuvring simulation models. ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, V007T06A016. DOI: 10.1115/OMAE2015-41887
[35] Golding B, Ross A, Fossen TI (2006) Identification of nonlinear viscous damping for marine vessels. 14th IFAC Symposium on System Identification, Newcastle, Australia, 332-337. https://doi.org/10.3182/20060329-3-AU-2901.00048
[36] Golub GH, Hansen PC, O’Leary DP (1999) Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 21: 185-194. DOI: 10.1137/S0895479897326432
[37] Golub GH, Reinsch C (1970) Singular value decomposition and least squares solutions. Numer. Math. 14: 403-420. DOI: 10.1007/BF02163027
[38] Guedes Soares C, Francisco RA, Moreira L, Laranjinha M (2004) Full-scale measurements of the maneuvering capabilities of fast patrol vessels. Argos Class. Mar. Technol. 41: 7-16. DOI: 10.5957/MT1.2004.41.1.7
[39] Guedes Soares C, Sutulo S, Francisco RA, Santos FM, Moreira L (1999) Full-scale measurements of the manoeuvring capabilities of a catamaran. Proceedings of the International Conference on Hydrodynamics of High Speed Craft, RINA, London, 1-12. DOI: 10.3940/rina.hs.1999.06
[40] Hansen PC (1998) Rank-deficient and discrete ill-posed problems, numerical aspects of linear inversion. SIAM, Philadelphia. DOI: 10.1137/1.9780898719697
[41] Hao Z, Yu S, Yang X, Zhao F, Hu R, Liang Y (2004) Online LS-SVM learning for classification problems based on incremental chunk. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 3173: 558-564. DOI: 10.1007/978-3-540-28647-9_92
[42] Hao L, Han Y, Shi C, Pan Z (2022) Recurrent neural networks for nonparametric modeling of ship maneuvering motion. International Journal of Naval Architecture and Ocean Engineering 14: 100436. https://doi.org/10.1016/J.IJNAOE.2022.100436
[43] Hassani V, S?rensen AJ, Pascoal AM (2013) Adaptive wave filtering for dynamic positioning of marine vessels using maximum likelihood identification: Theory and experiments. IFAC Proceedings Volumes (IFAC-PapersOnline), 203-208. DOI: 10.3182/20130918-4-JP-3022.00041
[44] He HW, Wang ZH, Zou ZJ, Liu Y (2022) Nonparametric modeling of ship maneuvering motion based on self-designed fully connected neural network. Ocean Eng. 251: 111113. DOI: 10.1016/J.OCEANENG.2022.111113
[45] Hinostroza MA, Xu H, Guedes Soares C (2017) Experimental and numerical simulations of zig-zag manoeuvres of a self-running ship model. Guedes Soares, C., Teixeira, A. P. (Eds.), Maritime Transportation and Harvesting of Sea Resources, Taylor & Francis Group, London, UK, 563-570
[46] Hochbaum A, Stern F, Agdrup K, Broglia R, Kim S, Perdon P, Quadvlieg F, Yasukawa H, Zou Z (2008) The Manoeuvring Committee Final Report and Recommendations to the 25th ITTC. Fukuoka, Japan
[47] Hwang W (1980) Application of system identification to ship maneuvering. PhD thesis, Massachusetts Institute of Technology, Cambridge, USA
[48] Inoue S, Hirano M, Kijima K, Takashina J (1981) A practical calculation method of ship maneuvering motion. Int. Shipbuild. Prog. 28: 207-222. DOI: 10.3233/ISP-1981-2832502
[49] Inoue S, Murayama K (1969) Calculation of turning ship derivatives in shallow water. West Japan Soc. Nav. Archit
[50] ITTC (2017a) Recommended procedures and guidelines-captive model test. The 28th International Towing Tank Conference, Wuxi, China, 7.5-02-06-02
[51] ITTC (2017b) Recommended procedures and guidelines - full scale manoeuvring trials. The 28th International Towing Tank Conference, Wuxi, China, 7.5-04-02-01
[52] ITTC (2005) Final report and recommendations to the 24th ITTC. 24th International Towing Tank Conference, 369-408
[53] ITTC (2002a) Recommended procedures and guidelines: Manoeuvrability captive model test procedure. The 23rd International Towing Tank Conference, ITTC’02, Venice, Italy
[54] ITTC (2002b) Recommended procedures and guidelines: Free running model tests. The 23rd International Towing Tank Conference, ITTC’02, Venice, Italy
[55] Jeon M, Yoon HK, Park J, Rhee SH, Seo J (2022) Identification of 4-DoF maneuvering mathematical models for a combatant in intact and damaged conditions. Int. J. Nav. Archit. Ocean Eng. 14: 100480. DOI: 10.1016/J.IJNAOE.2022.100480
[56] Jiang Y, Wang XG, Zou ZJ, Yang ZL (2021) Identification of coupled response models for ship steering and roll motion using support vector machines. Appl. Ocean Res. 110: 102607. DOI: 10.1016/J.APOR.2021.102607
[57] Jiang Y, Hou XR, Wang XG, Wang ZH, Yang ZL, Zou ZJ (2022) Identification modeling and prediction of ship maneuvering motion based on LSTM deep neural network. Journal of Marine Science and Technology (Japan) 27(1): 125-137. https://doi.org/10.1007/S00773-021-00819-9/FIGURES/15
[58] Kijima K, Nakiri Y (2003) On the practical prediction method for ship manoeuvring characteristics. International Conference on Marine Simulation and Ship Maneuverability MARSIM’03. Kanazawa, Japan, RC-6-1-RC-2-10
[59] Kim D, Benedict K, Paschen M (2017) Estimation of hydrodynamic coefficients from sea trials using a system identification method. J. Korean Soc. Mar. Environ. Saf. 23: 258-265. DOI: 10.7837/KOSOMES.2017.23.3.258
[60] Lataire E, Vantorre M, Delefortrie G, Candries M (2012) Mathematical modelling of forces acting on ships during lightering operations. Ocean Eng. 55: 101-115. DOI: 10.1016/J.OCEANENG.2012.07.029
[61] Li S, Wang T, Li G, Zhang H (2023) Ship maneuvering model optimization for improved identification with less excitation. Ocean Engineering 280: 114540. https://doi.org/10.1016/J.OCEANENG.2023.114540
[62] Li J, Zhang G, Zhang X, Zhang W (2024) Integrating dynamic event-triggered and sensor-tolerant control: Application to USV-UAVs cooperative formation system for maritime parallel search. IEEE Transactions on Intelligent Transportation Systems 25(5): 3986-3998
[63] Liu SY, Ouyang ZL, Chen G, Zhou X, Zou ZJ (2023) Black-box modeling of ship maneuvering motion based on Gaussian process regression with wavelet threshold denoising. Ocean Engineering 271: 113765. https://doi.org/10.1016/J.OCEANENG.2023.113765
[64] Liu B, Jin Y, Magee AR, Yiew LJ, Zhang S (2019) System identification of Abkowitz model for ship maneuvering motion based on ε-support vector regression. Proc. Int. Conf. Offshore Mech. Arct. Eng., OMAE 7A-2019. DOI: 10.1115/OMAE2019-96699
[65] Ljung L (1999) System identification: theory for the user. Prentice Hall PTR
[66] Luo W (2016) Parameter identifiability of ship manoeuvring modeling using system identification. Math. Probl. Eng. 2016: 1-10. DOI: 10.1155/2016/8909170
[67] Luo W, Guedes Soares C, Zou Z (2016) Parameter identification of ship maneuvering model based on support vector machines and particle swarm optimization. J. Offshore Mech. Arct. Eng. 138: 031101. DOI: 10.1115/1.4032892
[68] Luo W, Li X (2017) Measures to diminish the parameter drift in the modeling of ship manoeuvring using system identification. Appl. Ocean Res. 67: 9-20. DOI: 10.1016/j.apor.2017.06.008
[69] Luo W, Moreira L, Guedes Soares C (2014) Manoeuvring simulation of catamaran by using implicit models based on support vector machines. Ocean Eng. 82: 150-159. DOI: 10.1016/j.oceaneng.2014.03.008
[70] Luo W, Zhang Z (2016) Modeling of ship maneuvering motion using neural networks. J. Mar. Sci. Appl. 15: 426-432. DOI: 10.1007/S11804-016-1380-8
[71] Luo WL, Zou ZJ (2009) Parametric identification of ship maneuvering models by using support vector machines. J. Sh. Res. 53: 19-30
[72] Matsunaga M (1993) Method of predicting ship manoeuvrability in deep and shallow waters as a function of loading condition. NK Tech. Bull. 11: 51-59
[73] Meng Y, Zhang X, Zhu J (2022) Parameter identification of ship motion mathematical model based on full-scale trial data. Int. J. Nav. Archit. Ocean Eng. 14: 100437. DOI: 10.1016/J.IJNAOE.2022.100437
[74] Miyauchi Y, Maki A, Umeda N, Rachman DM, Akimoto Y (2022) System parameter exploration of ship maneuvering model for automatic docking/berthing using CMA-ES. J. Mar. Sci. Technol. 27: 1065-1083. DOI: 10.1007/S00773-022-00889-3/TABLES/9
[75] Moreira L, Guedes Soares C (2022) Simulating ship manoeuvrability with artificial neural networks trained by a short noisy data set. J. Mar. Sci. Eng. 11: 15. DOI: 10.3390/jmse11010015
[76] Moreira L, Guedes Soares C (2012) Recursive neural network model of catamaran manoeuvring. Int. J. Marit. Eng. 154: 121-130. DOI: 10.3940/rina.ijme.2012.a3.232
[77] Moreira L, Guedes Soares C (2003a) Dynamic model of manoeuvrability using recursive neural networks. Ocean Eng. 30: 1669-1697. DOI: 10.1016/S0029-8018(02)00147-6
[78] Moreira L, Guedes Soares C (2003b) Comparison between manoeuvring trials and simulations with recursive neural networks. Sh. Technol. Res. 50: 77-84. DOI: 10.1179/str.2003.50.2.004org/10.1179/str.2003.50.2.004
[79] Nomoto K, Taguchi K, Honda K, Hirano S (1956) On the steering qualities of ships. J. Zosen Kiokai 1956: 75-82. DOI: 10.2534/jjasnaoe1952.1956.99_75
[80] Okuda R, Yasukawa H, Matsuda A (2023) Validation of maneuvering simulations for a KCS at different forward speeds using the 4-DOF MMG method. Ocean Engineering 284: 115174. https://doi.org/10.1016/J.OCEANENG.2023.115174
[81] Okuda R, Yasukawa H, Sano M, Hirata N, Yoshimura Y, Furukawa Y, Matsuda A (2022) Maneuvering simulations of twin-propeller and twin-rudder ship in shallow water using equivalent single rudder model. Journal of Marine Science and Technology (Japan) 27(2): 948-970. https://doi.org/10.1007/S00773-022-00881-X/FIGURES/24
[82] Ouyang ZL, Chen G, Zou ZJ (2023a) Identification modeling of ship maneuvering motion based on local Gaussian process regression. Ocean Engineering 267: 113251. https://doi.org/10.1016/J.OCEANENG.2022.113251
[83] Ouyang ZL, Zou ZJ (2021) Nonparametric modeling of ship maneuvering motion based on Gaussian process regression optimized by genetic algorithm. Ocean Eng. 238: 109699. DOI: 10.1016/J.OCEANENG.2021.109699
[84] Ouyang ZL, Zou ZJ, Zou L (2023b) Adaptive hybrid-kernel function based Gaussian process regression for nonparametric modeling of ship maneuvering motion. Ocean Engineering 268: 113373. https://doi.org/10.1016/J.OCEANENG.2022.113373
[85] Ogawa A, Kasai H (1978) On the mathematical model of manoeuvring motion of ships. Int. Shipbuild. Prog. 25: 306-319. DOI: 10.3233/ISP-1978-2529202
[86] Papanikolaou A, Zaraphonitis G, Bitner-Gregersen E, Shigunov V, Moctar O El, Guedes Soares C, Reddy DN, Sprenger F (2016) Energy Efficient Safe Ship Operation (SHOPERA). Transp. Res. Procedia 14: 820-829. DOI: 10.1016/j.trpro.2016.05.030
[87] Perera LP, Moreira L, Santos FP, Ferrari V, Sutulo S, Guedes Soares C (2012) A navigation and control platform for real-time manoeuvring of autonomous ship models. IFAC Proceedings Volumes (IFAC-PapersOnline), Elsevier, 465-470. DOI: 10.3182/20120919-3-IT-2046.00079
[88] Perera LP, Oliveira P, Guedes Soares C (2016) System identification of vessel steering with unstructured uncertainties by persistent excitation maneuvers. IEEE J. Ocean. Eng. 41: 515-528. DOI: 10.1109/JOE.2015.2460871
[89] Perera LP, Oliveira P, Guedes Soares C (2015) System identification of nonlinear vessel steering. J. Offshore Mech. Arct. Eng. 137: 031302. DOI: 10.1115/1.4029826
[90] Perez T, Fossen TI (2011) Practical aspects of frequency-domain identification of dynamic models of marine structures from hydrodynamic data. Ocean Eng. 38: 426-435. DOI: 10.1016/J.OCEANENG.2010.11.004
[91] Pires da Silva P, Hinostroza MA, Sutulo S, Guedes Soares C (2021) Instrumentation and data acquisition system for full-scale manoeuvrability tests on board of naval surface ships. In: Guedes Soares, C., Santos, T. A. (Eds.), Developments in Maritime Technology and Engineering, CRC Press, pp. 227-234. DOI: 10.1201/9781003216599-25
[92] Pires da Silva P, Sutulo S, Guedes Soares C (2023) Sensitivity analysis of ship manoeuvring mathematical models. J. Mar. Sci. Eng. 11: 416. DOI: 10.3390/JMSE11020416
[93] Rajesh G, Bhattacharyya SK (2008) System identification for nonlinear maneuvering of large tankers using artificial neural network. Appl. Ocean Res. 30: 256-263. DOI: 10.1016/J.APOR.2008.10.003
[94] Revestido Herrero EE, Velasco Gonzalez FJ (2012) Two-step identification of non-linear manoeuvring models of marine vessels. Ocean Eng. 53: 72-82. DOI: 10.1016/j.oceaneng.2012.07.010
[95] Ridao P, Carreras M, Ribas D, Sanz PJ, Oliver G (2015) Intervention AUVs: The next challenge. Annu. Rev. Control 40: 227-241. DOI: 10.1016/J.ARCONTROL.2015.09.015
[96] Ross A (2008) Nonlinear manoeuvring models for ships: A Lagrangian approach. PhD thesis, Norwegian University of Science and Technology
[97] Ross A, Selvik O, Hassani V, Ringen E, Fathi D (2015) Identification of nonlinear manoeuvring models for marine vessels using planar motion mechanism tests. 34th International Conference on Ocean, Offshore and Arctic Engineering, ASME, Newfoundland, Canada, V007T06A014. DOI: 10.1115/OMAE201541789
[98] Selvik, Berg TE, Gavrilin S (2015) Sea trials for validation of shiphandling simulation models-a case study. Maritime-Port Technology and Development-Proceedings of the International Conference on Maritime and Port Technology and Development, MTEC 2014, CRC Press/Balkema, 141-146. DOI: 10.1201/B17517-18/SEA-TRIALS-VALIDATION-SHIPHANDLING-SIMULATION-MODELS
[99] Silva KM, Maki KJ (2022) Data-driven system identification of 6-DoF ship motion in waves with neural networks. Appl. Ocean Res. 125: 103222. DOI: 10.1016/J.APOR.2022.103222
[100] Song L, Hao L, Tao H, Xu C, Guo R, Li Y, Yao J (2023) Research on black-box modeling prediction of usv maneuvering based on SSA-WLS-SVM. Journal of Marine Science and Engineering 11(2): 324. https://doi.org/10.3390/JMSE11020324

Memo

Memo:
Received date:2023-11-22;Accepted date:2024-8-27。
Foundation item:This work was performed within the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering, financed by the Portuguese Foundation for Science and Technology (Funda&#231;&#227;o para a Ci&#234;ncia e Tecnologia-FCT) under contract UIDB/UIDP/00134/2020.<br>Corresponding author:C. Guedes Soares,E-mail:c.guedes.soares@centec.tecnico.ulisboa.pt
Last Update: 2025-05-28