[1] Alam MM, Elhimer M, Wang L, Jacono DL, Wong CW (2018) Vortex shedding from tandem cylinders. Experiments in Fluids 59(3): 60. https://doi.org/10.1007/s00348-018-2501-8
[2] Bearman P (2011) Circular cylinder wakes and vortex-induced vibrations. Journal of Fluids and Structures 27(5-6): 648-658. https://doi.org/10.1016/j.jfluidstructs.2011.03.021
[3] Chen LF, Wu GX (2020) Flow-induced transverse vibration of a circular cylinder close to a plane wall at small gap ratios. Applied Ocean Research 103: 102344. https://doi.org/10.1016/j.apor.2020.102344
[4] Chen W, Ji CN, Williams J, Xu D, Yang LH, Cui YT (2018) Vortex-induced vibrations of three tandem cylinders in laminar cross-flow: vibration response and galloping mechanism. Journal of Fluids and Structures 78: 215-238. https://doi.org/10.1016/j.jfluidstructs.2017.12.017
[5] Chen XY, Zha GC (2010) Fully coupled fluid-structural interaction in a hybrid Cartesian-body fitted grid system. Computational Mechanics 46 (1): 3-16. https://doi.org/10.1007/s00466-009-0421-4
[6] Chen Z, Alam MM, Qin B, Zhou Y (2020) Energy harvesting from and vibration response of different diameter cylinders. Applied Energy 278: 115737. https://doi.org/10.1016/j.apenergy.2020.115737
[7] Fan X, Wang Z, Chen X, Wang Y, Tan W (2020) Experimental investigation on flow-induced vibration of flexible multi cylinders in atmospheric boundary layer. International Journal of Mechanical Sciences 183: 105815. https://doi.org/10.1016/j.ijmecsci.2020.105815
[8] Favier J, Revell A, Pinelli AA (2014) Lattice Boltzmann-immersed boundary method to simulate the fluid interaction with moving and slender flexible objects. Journal of Computational Physics 261: 154-161. https://doi.org/10.1016/j.jcp.2013.12.052
[9] Giannopoulou O, Colagrossi A, Di Mascioc A, Mascia C (2019) Chorin’s approaches revisited: vortex particle method vs finite volume method. Engineering Analysis with Boundary Elements 106: 371-388. https://doi.org/10.1016/j.enganabound.2019.05.026.
[10] Han X, Lin W, Qiu A, Feng Z, Wu J, Tang Y, Zhao C (2019) Understanding vortex-induced vibration characteristics of a long flexible marine riser by a bidirectional fluid-structure coupling method. Journal of Marine Science and Technology 25: 620-639. https://doi.org/10.1007/s00773-019-00663-y
[11] Haussmann M, Hafen N, Raichle F, Trunk R, Krause, MJ (2020) Galilean invariance study on different lattice boltzmann fluid-solid interface approaches for vortex-induced vibrations. Computers & Mathematics with Applications 80(5): 671-691. https://doi.org/10.1016/j.camwa.2020.04.022
[12] Ji J, Chen W, Gao R, Liu B, Zhang J (2020) Research on vibration and heat transfer in heat exchanger with vortex generator. Journal of Thermophysics and Heat Transfer 6: 1-7. https://doi.org/10.2514/1.T6081
[13] Kang SK (2010) Immersed boundary methods in the lattice Boltzmann equation for flow simulation. PhD thesis, Texas A&M University, Texas
[14] Laborderie JD, Duchaine F, Gicquel L, Vermorel O, Wang G, Moreau S (2018) Numerical analysis of a high-order unstructured overset grid method for compressible les of turbomachinery. Journal of Computational Physics 363: 371-398. https://doi.org/10.1016/j.jcp.2018.02.045
[15] Li D, Wu Y, Ronch AD, Xiang J (2016) Energy harvesting by means of flow-induced vibrations on aerospace vehicles. Progress in Aerospace Sciences 86: 28-62. https://doi.org/10.1016/j.paerosci.2016.08.001
[16] Luo LS, Liao W, Chen X, Peng Y, Zhang W (2011) Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Physical review E 83(5): 056710. https://doi.org/10.1103/PhysRevE.83.056710
[17] Luo ZM, Zhang LX (2015) Force characteristics and hydrokinetic energy harvesting for VIV of four coupling-linked cylinders. Journal of Vibration and Shock 34(17): 25-29. https://doi.org/10.13465/j.cnki.jvs.2015.17.005
[18] Ma YX, Xu WH, Liu B (2019) Dynamic response of three long flexible cylinders subjected to flow-induced vibration (FIV) in an equilateral-triangular configuration. Ocean Engineering 183: 187-207. https://doi.org/10.1016/j.oceaneng.2019.04.096
[19] Mohanty A, Parida S, Behera RK, Roy T (2019) Vibration energy harvesting: A review. Journal of Advanced Dielectrics 9(4): 1-17. https://doi.org/10.1142/S2010135X19300019
[20] Rabiee AH, Barzan MR, Mohammadebrahim A (2021) Flow-induced vibration suppression of elastic square cylinder using windward-suction-leeward-blowing approach. Applied Ocean Research 109: 102552. https://doi.org/10.1016/j.apor.2021.102552
[21] Shu C, Wang Y, Teo CJ, Wu J (2014) Development of lattice Boltzmann flux solver for simulation of incompressible flows. Advances in Applied Mathematics and Mechanics 6(4): 436-460. https://doi.org/10.4208/aamm.2014.4.s2
[22] Singh SP, Mittal S (2005) Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes. Journal of Fluids and Structures 20(8): 1085-1104. https://doi.org/10.1016/j.jfluidstructs.2005.05.011
[23] Song H, Huang W, Chang S (2020) Empirical model for wake induced vibrations frequency response of cylinder with low mass ratio. Ocean Engineering 195: 106746. https://doi.org/10.1016/j.oceaneng.2019.106746
[24] Suzuki K, Inamuro T (2011) Effect of internal mass in the simulation of a moving body by the immersed boundary method. Computers and Fluids 49(1): 173-187. https://doi.org/10.1016/j.compfluid.2011.05.011
[25] Tan Q, Fan K, Guo J, Wen T, Zhou S (2021) A cantilever-driven rotor for efficient vibration energy harvesting. Energy 235: 121326. https://doi.org/10.1016/j.energy.2021.121326
[26] Vahdati M, Lee KB, Sureshkumar P (2020) A review of computational aeroelasticity of civil fan blades. International Journal of Gas Turbine 11(4): 22-35. https://doi.org/10.38036/jgpp.11.4_22
[27] Wang JS, Fan D, Lin K (2020) A review on flow-induced vibration of offshore circular cylinders. Journal of Hydrodynamics 32(5): 415-440. https://doi.org/10.1007/s42241-020-0032-2
[28] Wang H, Yu G, Yang W (2013) Numerical study of vortex-induced vibrations of three circular cylinders in equilateral-triangle arrangement. Advances in Mechanical Engineering 5: 1-14. https://doi.org/10.1155/2013/287923
[29] Wang Y, Shu C, Teo CJ, Wu J (2015) An immersed boundary-lattice Boltzmann flux solver and its applications to fluid-structure interaction problems. Journal of Fluids and Structures 54: 440-465. https://doi.org/10.1016/j.jfluidstructs.2014.12.003
[30] Wu W, Wang J (2017) Numerical simulation of VIV for a circular cylinder with a downstream control rod at low Reynolds number. European Journal of Mechanics-B/Fluids 68: 153-166. https://doi.org/10.1016/j.euromechflu.2017.12.005
[31] Wu XD, Chen F, Liu HP (2017) Combined immersed boundary method and MRT lattice Boltzmann flux solver for numerical simulations of incompressible flows. Applied Mathematics and Mechanics 38(12): 1679-1696. https://doi.org/10.1007/s10483-017-2290-7
[32] Xu F, Xiao Y, Liu H, Ou J (2014) Numerical study on vortex-induced vibration of three cylinders in equilateral-triangular arrangements. Proceedings of the 2nd Symposium on Fluid-Structure-Sound Interactions and Control, 391-398. https://doi.org/10.1007/978-3-642-40371-2_56
[33] Xu W, Zhang S, Ma Y, Liu B (2021) Fluid forces acting on three and four long side-by-side flexible cylinders undergoing flow-induced vibration (FIV). Marine Structures 75: 102877. https://doi.org/10.1016/j.marstruc.2020.102877
[34] Yang X, Ji C, Chen W, Zhang Z (2019) Wake patterns and hydrodynamic forces of flow around circular cylinders in an equilateral triangular arrangement. Journal of Hydrodynamics Ser. A 34(1): 69-76. https://doi.org/10.16076/j.cnki.cjhd.2019.01.009
[35] Zhang AM, Li SM, Pu C, Li Shuai, Liu YL (2023) A unified theory for bubble dynamics. Physics of Fluids 35: 033323. https://doi.org/10.1063/5.0145415
[36] Zhang B, Mao Z, Song B, Tian W, Ding W (2018) Numerical investigation on VIV energy harvesting of four cylinders in close staggered formation. Ocean Engineering 165: 55-68. https://doi.org/10.1016/j.oceaneng.2018.07.042
[37] Zhou Y, Alam MM (2016) Wake of two interacting circular cylinders: a review. International Journal of Heat & Fluid Flow 62: 510-537. https://doi.org/10.1016/j.ijheatfluidflow.2016.08.008