[1] Arastoopour H, Cohan A (2017) CFD simulation of the effect of rain on the performance of horizontal wind turbines. AIChE Journal 63(12): 5375-5383. https://doi.org/10.1002/aic.15928
[2] Bera P, Lakshmi RV, Pathak SM, Bonu V, Mishnaevsky L, Barshilia HC (2023) Recent progress in the development and evaluation of rain and solid particle erosion resistant coatings for leading edge protection of wind turbine blades. Polymer Reviews 64(2): 639-689. https://doi.org/10.1080/15583724.2023.2270050
[3] Cai Y, Zhao H, Li X, Liu Y (2023) Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement. Energy 285: 129538. https://doi.org/10.1016/j.energy.2023.129538
[4] Chen G, Liang XF, Li XB (2022) Modelling of wake dynamics and instabilities of a floating horizontal-axis wind turbine under surge motion. Energy 239: 122110. https://doi.org/10.1016/j.energy.2021.122110
[5] Chen Z, Wang X, Guo Y, Kang S (2021a) Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions. Renewable Energy 163: 1849-1870. https://doi.org/10.1016/j.renene.2020.10.096
[6] Chen Z, Wang X, Kang S (2021b) Effect of the coupled pitch-yaw motion on the unsteady aerodynamic performance and structural response of a floating offshore wind turbine. Processes 9(2): 290. https://doi.org/10.3390/pr9020290
[7] Cottura L, Caradonna R, Novo R, Ghigo A, Bracco G, Mattiazzo G (2022) Effect of pitching motion on production in a OFWT. Journal of Ocean Engineering and Marine Energy 8(3): 319-330. https://doi.org/10.1007/s40722-022-00227-0
[8] Dong J, Viré A (2022) The aerodynamics of floating offshore wind turbines in different working states during surge motion. Renewable Energy 195: 1125-1136. https://doi.org/10.1016/j.renene.2022.06.016
[9] El-Askary WA, Sakr IM, AbdelSalam AM, Abuhegazy MR (2017) Modeling of wind turbine wakes under thermally-stratified atmospheric boundary layer. Journal of Wind Engineering and Industrial Aerodynamics 160: 1-15. https://doi.org/10.1016/j.jweia.2016.11.001
[10] Fang J, Hu W, Liu Z, Chen W, Tan J, Jiang Z, Verma AS (2022) Wind turbine rotor speed design optimization considering rain erosion based on deep reinforcement learning. Renewable and Sustainable Energy Reviews 168: 112788. https://doi.org/10.1016/j.rser.2022.112788
[11] Fang Y, Duan L, Han Z, Zhao Y, Yang H (2020) Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion. Energy 192: 116621. https://doi.org/10.1016/j.energy.2019.116621
[12] Fang Y, Li G, Duan L, Han Z, Zhao Y (2021) Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine. Energy 218: 119519. https://doi.org/10.1016/j.energy.2020.119519
[13] Farrugia R, Sant T, Micallef D (2016) A study on the aerodynamics of a floating wind turbine rotor. Renewable Energy 86: 770-784. https://doi.org/10.1016/j.renene.2015.08.063
[14] Feng X, Lin Y, Zhang G, Li D, Liu H, Wang B (2021) Influence of combined motion of pitch and surge with phase difference on aerodynamic performance of floating offshore wind turbine. Journal of Marine Science and Engineering 9(7): 699. https://doi.org/10.3390/jmse9070699
[15] Fontanella A, Facchinetti A, Di Carlo S, Belloli M (2022) Wind tunnel investigation of the aerodynamic response of two 15 MW floating wind turbines. Wind Energy Science 7(4): 1711-1729. https://doi.org/10.5194/wes-7-1711-2022
[16] Fu S, Li Z, Zhu W, Han X, Liang X, Yang H, Shen W (2023) Study on aerodynamic performance and wake characteristics of a floating offshore wind turbine under pitch motion. Renewable Energy 205: 317-325. https://doi.org/10.1016/j.renene.2023.01.040
[17] Gueydon S (2016) Aerodynamic damping on a semisubmersible floating foundation for wind turbines. Energy Procedia 94: 367-378. https://doi.org/10.1016/j.egypro.2016.09.196
[18] Guo Y, Liu LQ, Li Y, Xiao CS, Tang YG (2018) The surge-heave-pitch coupling motions of the φ-type vertical axis wind turbine supported by the truss Spar floating foundation. Journal of Hydrodynamics 31(4): 669-681. https://doi.org/10.1007/s42241-018-0158-7
[19] Guo Y, Wang X, Mei Y, Ye Z, Guo X (2022) Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine. Renewable Energy 196: 278-297. https://doi.org/10.1016/j.renene.2022.06.108
[20] Hoksbergen TH, Akkerman R, Baran I (2023) Rain droplet impact stress analysis for leading edge protection coating systems for wind turbine blades. Renewable Energy 218: 119328. https://doi.org/10.1016/j.renene.2023.119328
[21] Hu D, Deng L, Zeng L (2021) Study on the aerodynamic performance of floating offshore wind turbine considering the tower shadow effect. Processes 9(6): 1047. https://doi.org/10.3390/pr9061047
[22] Hu D, Zeng L, Deng L, Yin J, Liu J (2023) Aerodynamic wake characteristics analysis of floating offshore wind turbine under platform pitching and yawing motions. Journal of Renewable and Sustainable Energy 15(3): 033303. https://doi.org/10.1063/5.0148352
[23] Jiang Y, Hu G, Zong Z, Zou L, Jin G (2020) Influence of an integral heave plate on the dynamic response of floating offshore wind turbine under operational and storm conditions. Energies 13(22): 6122. https://doi.org/10.3390/en13226122
[24] Kang TW, Kim ES, Yang HI (2021) Effects of dynamic motion and structural response of a semi-submersible floating offshore wind turbine structure under waves generated in a hurricane environment. International Journal of Precision Engineering and Manufacturing-Green Technology 9(2): 537-556. https://doi.org/10.1007/s40684-021-00331-w
[25] Ke S, Yu W, Wang T, Ge Y (2019) Aerodynamic performance and wind-induced effect of large-scale wind turbine system under yaw and wind-rain combination action. Renewable Energy 136: 235-253. https://doi.org/10.1016/j.renene.2018.12.123
[26] Kirby AC, Brazell MJ, Yang Z, Roy R, Ahrabi BR, Stoellinger MK, Sitaraman J, Mavriplis DJ (2019) Wind farm simulations using an overset hp-adaptive approach with blade-resolved turbine models. International Journal of High Performance Computing Applications 33(5): 897-923. https://doi.org/10.1177/1094342019832960
[27] Kuang L, Lu Q, Huang X, Song L, Chen Y, Su J, Han Z, Zhou D, Zhao Y, Xu Y, Liu Y (2022) Characterization of wake interference between two tandem offshore floating vertical-axis wind turbines: Effect of platform pitch motion. Energy Conversion and Management 265: 115769. https://doi.org/10.1016/j.enconman.2022.115769
[28] Le C, Li Y, Ding H (2019) Study on the coupled dynamic responses of a submerged floating wind turbine under different mooring conditions. Energies 12(3): 418. https://doi.org/10.3390/en12030418
[29] Lee H, Lee DJ (2019) Effects of platform motions on aerodynamic performance and unsteady wake evolution of a floating offshore wind turbine. Renewable Energy 143: 9-23. https://doi.org/10.1016/j.renene.2019.04.134
[30] Lei H, Su J, Bao Y, Chen Y, Han Z, Zhou D (2019) Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms. Energy 166: 471-489. https://doi.org/10.1016/j.energy.2018.10.101
[31] Lei H, Zhou D, Bao Y, Chen C, Ma N, Han Z (2017) Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion. Energy 127: 1-17. https://doi.org/10.1016/j.energy.2017.03.087
[32] Li J, Bian J, Ma Y, Jiang Y (2021) Impact of typhoons on floating offshore wind turbines: A case study of typhoon mangkhut. Journal of Marine Science and Engineering 9(5): 543. https://doi.org/10.3390/jmse9050543
[33] Li N, Li L, Liu Y, Wu Y, Meng H, Yan J, Han S (2022) Effects of the parameter C4ε in the extended k-ε turbulence model for wind farm wake simulation using an actuator disc. Journal of Marine Science and Engineering 10(4): 544. https://doi.org/10.3390/jmse10040544
[34] Nedjari HD, Guerri O, Saighi M (2020) Full rotor modelling and generalized actuator disc for wind turbine wake investigation. Energy Reports 6: 232-255. https://doi.org/10.1016/j.egyr.2019.10.041
[35] Norouzian F, Marchetti E, Gashinova M, Hoare E, Constantinou C, Gardner P, Cherniakov M (2020) Rain attenuation at millimeter wave and low-THz frequencies. IEEE Transactions on Antennas and Propagation 68(1): 421-431. https://doi.org/10.1109/tap.2019.2938735
[36] Nybo A, Nielsen FG, Reuder J, Churchfield MJ, Godvik M (2020) Evaluation of different wind fields for the investigation of the dynamic response of offshore wind turbines. Wind Energy 23(9): 1810-1830. https://doi.org/10.1002/we.2518
[37] Putra MJ, Oguz E, Uzol NS (2023) Aerodynamic and hydrodynamic investigations on linear upscaling and optimization of floating offshore wind turbines. Ocean Engineering 287: 115728. https://doi.org/10.1016/j.oceaneng.2023.115728
[38] Qin M, Shi W, Chai W, Fu X, Li L, Li X (2023) Extreme structural response prediction and fatigue damage evaluation for large-scale monopile offshore wind turbines subject to typhoon conditions. Renewable Energy 208: 450-464. https://doi.org/10.1016/j.renene.2023.03.066
[39] Rezaee M, Fathi R, Jahangiri V, Ettefagh MM, Jamalkia A, Sadeghi MH (2021) Detection of damages in mooring lines of spar type floating offshore wind turbines using fuzzy classification and arma parametric modeling. International Journal of Structural Stability and Dynamics 21(8): 2150111. https://doi.org/10.1142/s021945542150111x
[40] Sant T, Buhagiar D, Farrugia RN (2018) Evaluating a new concept to integrate compressed air energy storage in spar-type floating offshore wind turbine structures. Ocean Engineering 166: 232-241. https://doi.org/10.1016/j.oceaneng.2018.08.017
[41] Serio MA, Carollo FG, Ferro V (2019) Raindrop size distribution and terminal velocity for rainfall erosivity studies: A review. Journal of Hydrology 576: 210-228. https://doi.org/10.1016/j.jhydrol.2019.06.040
[42] Sun Q, Li G, Duan L, He Z (2023) The coupling of tower-shadow effect and surge motion intensifies aerodynamic load variability in downwind floating offshore wind turbines. Energy 282: 128788. https://doi.org/10.1016/j.energy.2023.128788
[43] Tang Z, Melville B, Singhal N, Shamseldin A, Zheng J, Guan D, Cheng L (2022) Countermeasures for local scour at offshore wind turbine monopile foundations: A review. Water Science and Engineering 15(1): 15-28. https://doi.org/10.1016/j.wse.2021.12.010
[44] Wang Q, Liao K, Ma Q (2020) The influence of tilt angle on the aerodynamic performance of a wind turbine. Applied Sciences-basel 10(15): 5380. https://doi.org/10.3390/app10155380
[45] Wang X, Cai C, Cai SG, Wang T, Wang Z, Song J, Rong X, Li Qa (2023) A review of aerodynamic and wake characteristics of floating offshore wind turbines. Renewable and Sustainable Energy Reviews 175: 113144. https://doi.org/10.1016/j.rser.2022.113144
[46] Wang Y, Lin J, Duan H, Zhang J (2021) Investigation on thrust characteristics of a downstream offshore floating wind turbine under yawed inflow conditions. Journal of Marine Science and Engineering 9(11): 1215. https://doi.org/10.3390/jmse9111215
[47] Wen B, Dong X, Tian X, Peng Z, Zhang W, Wei K (2018) The power performance of an offshore floating wind turbine in platform pitching motion. Energy 154: 508-521. https://doi.org/10.1016/j.energy.2018.04.140
[48] Wu S, Sun H, Li X (2022a) Response of 5 MW floating wind turbines to combined action of wind and rain. Journal of Marine Science and Engineering 10(2): 284. https://doi.org/10.3390/jmse10020284
[49] Wu S, Sun H, Zheng X (2022b) A numerical study on dynamic characteristics of 5 MW floating wind turbine under wind-rain conditions. Ocean Engineering 262: 112095. https://doi.org/10.1016/j.oceaneng.2022.112095
[50] Wu X, Lu W, Wang K, Hu W, Fang J, Zha R (2024) Numerical study on aerodynamic performance of floating dual-rotor wind turbines in heave and surge motions. China Ocean Engineering 37(6): 1011-1021. https://doi.org/10.1007/s13344-023-0084-5
[51] Xu B, Kang H, Shen X, Li Z, Cai X, Hu Z (2023) Aerodynamic analysis of a downwind offshore floating wind turbine with rotor uptilt angles in platform pitching motion. Ocean Engineering 281: 114951. https://doi.org/10.1016/j.oceaneng.2023.114951
[52] Yang Y (2019) Discussion of “An improved k-ω turbulence model for the simulations of the wind turbine wakes in a neutral atmospheric boundary layer flow” by Ioannis Bouras, Lin Ma, Derek Ingham & Mohamed Pourkashanian. Journal of Wind Engineering & Industrial Aerodynamics 184: 458-459. https://doi.org/10.1016/j.jweia.2018.12.004
[53] Ye Z, Wang X, Chen Z, Wang L (2020) Unsteady aerodynamic characteristics of a horizontal wind turbine under yaw and dynamic yawing. Acta Mechanica Sinica 36(2): 320-338. https://doi.org/10.1007/s10409-020-00947-2
[54] Yu Z, Zheng X, Ma Q (2018) Study on actuator line modeling of two NREL 5-MW wind turbine wakes. Applied Sciences-basel 8(3): 434. https://doi.org/10.3390/app8030434
[55] Zheng X, Yao Y, Hu Z, Yu Z, Hu S (2022) Influence of turbulence intensity on the aerodynamic performance of wind turbines based on the fluid-structure coupling method. Applied Sciences-basel 13(1): 250. https://doi.org/10.3390/app13010250