|Table of Contents|

Citation:
 Xinyu Jia,Guoyong Jin,Tiangui Ye.Review of Underwater Anechoic Coating Technology Under Hydrostatic Pressure[J].Journal of Marine Science and Application,2025,(1):137-151.[doi:10.1007/s11804-024-00462-x]
Click and Copy

Review of Underwater Anechoic Coating Technology Under Hydrostatic Pressure

Info

Title:
Review of Underwater Anechoic Coating Technology Under Hydrostatic Pressure
Author(s):
Xinyu Jia Guoyong Jin Tiangui Ye
Affilations:
Author(s):
Xinyu Jia Guoyong Jin Tiangui Ye
College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
Keywords:
Anechoic coatingsUnderwater acousticsHydrostatic pressureAnalysis methodsStructural designs
分类号:
-
DOI:
10.1007/s11804-024-00462-x
Abstract:
The underwater anechoic coating technology, which considers pressure resistance and low-frequency broadband sound absorption, has become a research hotspot in underwater acoustics and has received wide attention to address the increasingly advanced low-frequency sonar detection technology and adapt to the working environment of underwater vehicles in deep submergence. One the one hand, controlling low-frequency sound waves in water is more challenging than in air. On the other hand, in addition to initiating structural deformation, hydrostatic pressure also changes material parameters, both of which have a major effect on the sound absorption performance of the anechoic coating. Therefore, resolving the pressure resistance and acoustic performance of underwater acoustic coatings is difficult. Particularly, a bottleneck problem that must be addressed in this field is the acoustic structure design with low-frequency broadband sound absorption under high hydrostatic pressure. Based on the influence of hydrostatic pressure on underwater anechoic coatings, the research status of underwater acoustic structures under hydrostatic pressure from the aspects of sound absorption mechanisms, analysis methods, and structural designs is reviewed in this paper. Finally, the challenges and research trends encountered by underwater anechoic coating technology under hydrostatic pressure are summarized, providing a reference for the design and research of low-frequency broadband anechoic coating.

References:

Audoly C (2011) Evaluation of sound velocity inside underwater acoustic materials using test panel acoustic measurements. 10th Anglo-French Physical Acoustics Conference, Frejus, France, 19-21. DOI: 10.1088/1742-6596/353/1/012004
Baena JC, Wang C, Fu Y, Kabir II, Yuen ACY, Peng Z, Yeoh GH (2023) A new fabrication method of designed metamaterial based on a 3D-printed structure for underwater sound absorption applications. Applied Acoustics 203: 109221. DOI: 10.1016/j.apacoust.2023.109221
Bambill DV, La Malfa S, Rossit CA, Laura PAA (2004) Analytical and experimental investigation on transverse vibrations of solid, circular and annular plates carrying a concentrated mass at an arbitrary position with marine applications. Ocean Engineering 31(2): 127-138. DOI: 10.1016/s0029-8018(03)00116-1
Cai CX, Wang X, Wang QF, Li MX, He GC, Wang ZH, Qin Y (2022) Design and optimization of three-dimensional composite multilayer cylindrical pentamode metamaterials for controlling low frequency acoustic waves. Scientific Reports 12(1): 5594. DOI: 10.1038/s41598-022-09313-7
Chahr-Eddine K, Yassine A (2014) Forced axial and torsional vibrations of a shaft line using the transfer matrix method related to solution coefficients. Journal of Marine Science and Application 13: 200-205. DOI: 10.1007/s11804-014-1251-0
Chen W, Lu C, Zhou X (2022) Analysis on the effect of hydrostatic pressure on the performance of acoustic coating. Ship & Boat 34(3): 25-34. (in Chinese) DOI: 10.19423/j.cnki.31-1561/u.2023.03.025
Chen Y, Zhao BH, Liu XN, Hu GK (2020) Highly anisotropic hexagonal lattice material for low frequency water sound insulation. Extreme Mechanics Letters 40: 100916. DOI: 10.1016/j.eml.2020.100916
Ciaburro G, Iannace G (2022) Membrane-type acoustic metamaterial using cork sheets and attached masses based on reused materials. Applied Acoustics 189: 108605. DOI: 10.1016/j.apacoust.2021.108605
Ciaburro G, Parente R, Iannace G, Puyana-Romero V (2022) Design optimization of three-layered metamaterial acoustic absorbers based on PVC reused membrane and metal washers. Sustainability 14(7): 4218. DOI: 10.3390/su14074218
Cushing CW, Kelsten MJ, Su XS, Wilson PS, Haberman MR, Norris AN (2022) Design and characterization of a three-dimensional anisotropic additively manufactured pentamode material. Journal of the Acoustical Society of America 151(1): 168-179. DOI: 10.1121/10.0009161
Dong WK, Chen MX (2021) Sound absorption performance analysis of anechoic coating under hydrostatic pressure considering cavity pressure. Chinese Journal of Ship Research 17(2): 132-140. (in Chinese) DOI: 10.19693/j.issn.1673-3185.02186
Fan N, Ren W, Qiao D (2021) Comparison of different testing methods for acoustic properties of small samples of underwater acoustic materials. Development and Application of Materials 36(3): 25-29. (in Chinese) DOI: 10.19515/j.cnki.1003-1545.2021.03.005
Feng J, Liang Q, Dou Y, He J, He J, Chen T (2022) Ultrathin underwater sound-absorbing metasurface by coupling local resonance with cavity resonance. Physical Review Applied 18(3): 034054. DOI: 10.1103/physrevapplied.18.034054
Feng Y, Qiao J, Li L (2020) Acoustic behavior of composites with gradient impedance. Materials & Design 193: 108870. DOI: 10.1016/j.matdes.2020.108870
Fu YF, Fischer J, Pan KQ, Yeoh GH, Peng ZX (2021a) Underwater sound absorption properties of polydimethylsiloxane/carbon nanotube composites with steel plate backing. Applied Acoustics 171: 107668. DOI: 10.1016/j.apacoust.2020.107668
Fu YF, Kabir II, Yeoh GH, Peng ZX (2021b) A review on polymer-based materials for underwater sound absorption. Polymer Testing 96: 107115. DOI: 10.1016/j.polymertesting.2021.107115
Gao C, Zhang H, Li HC, Pang FZ, Wang HF (2022) Numerical and experimental investigation of vibro-acoustic characteristics of a submerged stiffened cylindrical shell excited by a mechanical force. Ocean Engineering 249: 110913. DOI: 10.1016/j.oceaneng.2022.110913
Gao N, Yu H, Liu J, Deng J, Huang Q, Chen D, Pan G (2023) Experimental investigation of composite metamaterial for underwater sound absorption. Applied Acoustics 211: 109466. DOI: 10.1016/j.apacoust.2023.109466
Gao N, Zhang Y (2018) A low frequency underwater metastructure composed by helix metal and viscoelastic damping rubber. Journal of Vibration and Control 25(3): 538-548. DOI: 10.1177/1077546318788446
Gao NS, Lu K (2020) An underwater metamaterial for broadband acoustic absorption at low frequency. Applied Acoustics 169: 107500. DOI: 10.1016/j.apacoust.2020.107500
Grinenko A, Wilcox PD, Courtney CRP, Drinkwater BW (2012) Acoustic radiation force analysis using finite difference time domain method. The Journal of the Acoustical Society of America 131: 3664-3670. DOI: 10.1121/1.3699204
Gu Y, Long HY, Cheng Y, Deng MX, Liu XJ (2021a) Ultrathin composite metasurface for absorbing subkilohertz low-frequency underwater sound. Physical Review Applied 16(1): 014021. DOI: 10.1103/physrevapplied.16.014021
Gu Y, Zhong H, Bao B, Wang Q, Wu J (2021b) Experimental investigation of underwater locally multi-resonant metamaterials under high hydrostatic pressure for low frequency sound absorption. Applied Acoustics 172: 107605. DOI: 10.1016/j.apacoust.2020.107605
Haberman MR, Berthelot YH, Cherkaoui M (2005) Transmission loss of viscoelastic materials containing oriented ellipsoidal coated microinclusions. Journal of the Acoustical Society of America 118(5): 2984-2992. DOI: 10.1121/1.2062648
Hammad A, Abdel-Nasser Y, Shama M (2021) Rational design of T-girders via finite element method. Journal of Marine Science and Application 20(2): 302-316. DOI: 10.1007/s11804-021-00206-1
Huang X, Zhu B, Hu P (2013) Measurement of dynamic properties of rubber under hydrostatic pressure by water-filled acoustic tube. Journal of Shanghai Jiao Tong University 47(1): 1503-1514. (in Chinese) DOI: 10.16183/j.cnki.jsjtu.2013.10.003
Humphrey VF, Robinson SP, Smith JD, Martin MJ, Beamiss GA, Hayman G, Carroll NL (2008) Acoustic characterization of panel materials under simulated ocean conditions using a parametric array source. Journal of the Acoustical Society of America 124(2): 803-814. DOI: 10.1121/1.2945119
Jia X, Jin G, YE T, Yan Y (2023a) Characteristics of pressure resistance and sound absorption on anechoic coating with metal perforated plate under hydrostatic pressure. Journal of Vibration Engineering 1(1): 1-10. (in Chiness) http://kns.cnki.net/kcms/detail/32.1349.TB.20231106.0854.002.html
Jia XY, Jin GY, Shi KK, Bu CY, Ye TG (2022) A hybrid acoustic structure for low-frequency and broadband underwater sound absorption. Journal of Low Frequency Noise Vibration and Active Control 41(1): 1160-1177. DOI: 10.1177/14613484221081846
Jia XY, Jin GY, Ye TG, Ma XL (2023b) An efficient underwater absorber using pentamode metamaterials for broadband frequency. Journal of Vibration and Control 30(7): 1759-1771. DOI: 10.1177/10775463231170911
Jiang B, Yu J, Li W, Chai Y, Gui Q (2023) A coupled overlapping finite element method for analyzing underwater acoustic scattering problems. Journal of Marine Science and Engineering 11(9): 1676. DOI: 10.3390/jmse11091676
Jiang H, Wang Y (2012) Phononic glass: A robust acoustic-absorption material. The Journal of the Acoustical Society of America 132(2): 694-699. DOI: 10.1121/1.4730922
Jiang H, Wang Y, Zhang M, Hu Y, Lan D, Zhang Y, Wei B (2009) Locally resonant phononic woodpile: A wide band anomalous underwater acoustic absorbing material. Applied Physics Letters 95(10): 104101. DOI: 10.1063/1.3216805
Jiang WW, Chen GY, Zhu Y (2006) Computation and analysis of sound absorption performance of rubber structures under variable hydraulic pressure. Noise and Vibration Control 5: 55-73. (in Chinese)
Jin GY, Shi KK, Ye TG, Zhou JL, Yin YW (2020) Sound absorption behaviors of metamaterials with periodic multi-resonator and voids in water. Applied Acoustics 166: 107351. DOI: 10.1016/j.apacoust.2020.107351
Liu XL, Liu CR, Wu JH (2022) Research progress of sound-absorbing metamaterials. Journal of Harbin Engineering University 43: 1241-1251. (in Chinese)
Lane R (1981) Absorption mechanisms for waterborne sound in alberich anechoic layers. Ultrasonics 19(7): 28-30. DOI: 10.1016/0041-624x(81)90029-9
Lee D, Jang Y, Park J, Kang IS, Li J, Rho J (2021a) Underwater stealth metasurfaces composed of split-orifice-conduit hybrid resonators. Journal of Applied Physics 129(10): 105103. DOI: 10.1063/5.0042246
Li HC, Pang FZ, Tang Y, Chen HL, Du Y (2019a) Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method. Composites Part B 164(10): 249-264. DOI: 10.1016/j.compositesb.2018.11.046
Li HC, Pang FZ, Miao XH, Li YH (2019b) Jacobi-Ritz method for free vibration analysis of uniform and stepped circular cylindrical shells with arbitrary boundary conditions: A unified formulation. Composites Part B 77(3): 427-440. DOI: 10.1016/j.camwa.2018.09.046
Lee H, Jung M, Kim M, Shin R, Kang S, Ohm WS, Kim YT (2018) Acoustically sticky topographic metasurfaces for underwater sound absorption. Journal of the Acoustical Society of America 143(9): 1534-1547. DOI: 10.1121/1.5027247
Lee JW, Lee JY, Lee DM (2021b) Free vibration analysis of axially moving beams using the transfer matrix method. Journal of Mechanical Science and Technology 35(1): 1369-1376. DOI: 10.1007/s12206-021-0303-z
Li J, Liu ZY, Qiu CY (2006) Negative refraction imaging of acoustic waves by a two-dimensional three-component phononic crystal. Physical Review B 73(5): 054302. DOI: 10.1016/j.physleta.2008.02.043
Li K, Zhou Z, Huang Z, Lin Y, Chen M, Yang P, Li Y (2023) Underwater sound absorption characteristic of the rubber core sandwich structure with funnel-shaped cavities reinforced by carbon fiber columns. Applied Acoustics 208: 109375. DOI: 10.1016/j.apacoust.2023.109375
Lin WL, Bi CX, Vorl?nder M, Zhang YB, Opdam R (2016) In situ measurement of the absorption coefficient based on a timedomain subtraction technique with a particle velocity transducer. Acta Acustica united with Acustica 102(5): 945-954. DOI: 10.3813/AAA.919009
Liu HX, Wu JH, Ma FY (2021) Dynamic tunable acoustic metasurface with continuously perfect sound absorption. Journal of Physics D-Applied Physics 54(36): 365105. DOI: 10.1088/1361-6463/ac0ab9
Liu JW, Yang HB, Zhao HG, Wang Y, Yu DL, Wen JH (2023) A lightweight waterborne acoustic meta-absorber with low characteristic impedance rods. International Journal of Mechanical Sciences 255: 108469. DOI: 10.1016/j.ijmecsci.2023.108469
Liu JY, Guo HB, Wang T (2020) A review of acoustic metamaterials and phononic crystals. Crystals 10(4): 305. DOI: 10.3390/cryst10040305
Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289(5485): 1734-1736. DOI: 10.1126/science.289.5485.1734
Long HY, Shao C, Cheng Y, Tao JC, Liu XJ (2021) High absorption asymmetry enabled by a deep-subwavelength ventilated sound absorber. Applied Physics Letters 118(26): 263502. DOI: 10.1063/5.0055157
Luo Y, Lou J, Zhang Y, Li J (2021) Sound-absorption mechanism of structures with periodic cavities. Acoustics Australia 49(3): 371-383. DOI: 10.1007/s40857-021-00233-6
Ma GC, Sheng P (2016) Acoustic metamaterials: From local resonances to broad horizons. Science Advances 2(2): 1501595. DOI: 10.1126/sciadv.1501595
Meng H, Wen JH, Zhao HG, Lv LM, Wen XS (2012) Analysis of absorption performances of anechoic layers with steel plate backing. Journal of the Acoustical Society of America 132(1): 69-75. DOI:https://doi.org/10.1121/1.4728198
Nguyen H, Zhu R, Chen JK, Tracy SL, Huang GL (2018) Analytical coupled modeling of a magneto-based acoustic metamaterial harvester. Smart Materials and Structures 27(5): 055010. DOI: 10.1088/1361-665x/aab993
Pang FZ, Tang Y, Qian YX, Zheng JJ, Hui D, Li HC (2023) Analysis of acoustic radiation characteristic of laminated paraboloidal shell based on Jacobi-Ritz-spectral BEM. Ocean Engineering 280: 114686. DOI: 10.1016/j.oceaneng.2023.114686
Philip B, Abraham JK, Varadan VK, Natarajan V, Jayakumari VG (2004) Passive underwater acoustic damping materials with Rho-C rubber-carbon fiber and molecular sieves. Smart Materials and Structures 13(6): 99-104. DOI: 10.1088/0964-1726/13/6/n01
Ponge MF, Poncelet O, Torrent D (2017) Dynamic homogenization theory for nonlocal acoustic metamaterials. Extreme Mechanics Letters 12(2): 71-76. DOI: 10.1016/j.eml.2016.10.006
Rahnemoonfar M, Rahman A (2016) Automatic seagrass pattern identification on sonar images. In Conference on Automatic Target Recognition XXVI, Baltimore, USA, 1-10. DOI: 10.1117/12.2224191
Ren Y, Qian YX, Pang FZ, Su Y, Li HC (2023) Investigation on the flow-induced structure noise of a submerged cone-cylinder-hemisphere combined shell. Ocean Engineering 270: 113657. DOI: 10.1016/j.oceaneng.2023.113657
Sharma GS, Skvortsov A, MacGillivray I, Kessissoglou N (2019) Sound absorption by rubber coatings with periodic voids and hard inclusions. Applied Acoustics 143(3): 200-210. DOI: 10.1016/j.apacoust.2018.09.003
Sharma GS, Skvortsov A, MacGillivray I, Kessissoglou N (2020a) On superscattering of sound waves by a lattice of disk-shaped cavities in a soft material. Applied Physics Letters 116(4): 041602. DOI: 10.1063/1.5130695
Sharma GS, Skvortsov A, MacGillivray I, Kessissoglou N (2020b) Sound scattering by a bubble metasurface. Physical Review B 102: 214308. DOI: 10.1103/physrevb.102.214308
Shi K, Hu D, Li D, Jin G (2023a) Sound absorption behaviors of composite functionally graded acoustic structure under hydrostatic pressure. Applied Acoustics 211: 109474. DOI: 10.1016/j.apacoust.2023.109474
Shi K, Jin G, Ye T (2021) Underwater sound absorption performance of functionally graded anechoic coating with cavities. Acta Acustica 46(1): 394-404. (in Chinese) DOI:https://doi.org/10.15949/j.cnki.0371-0025.2021.03.008
Shi K, Li D, Hu D, Shen Q, Jin G (2023b) A new multi-mechanism synergistic acoustic structure for underwater low-frequency and broadband sound absorption. Journal of Marine Science and Engineering 11(12): 2373. DOI: 10.3390/jmse11122373
Shi KK, Jin GY, Liu RJ, Ye TG, Xue YQ (2019a) Underwater sound absorption performance of acoustic metamaterials with multilayered locally resonant scatterers. Results in Physics 12(2): 132-142. DOI: 10.1016/j.rinp.2018.11.060
Shi KK, Jin GY, Ye TG, Zhang YT, Chen MF, Xue YQ (2019b) Underwater sound absorption characteristics of metamaterials with steel plate backing. Applied Acoustics 153(6): 147-156. DOI: 10.1016/j.apacoust.2019.04.016
Shi S (2023) Broadband test method for acoustic properties of large underwater sample materials. PhD thesis, China Ship Research and Development Academy, Wuxi, 75-85
Si TF, Hou ZH, Li TG, Zhang ZJ (2022) Underwater sound absorption performance of exponential gradient anechoic coating. Modern Physics Letters B 36(24): 501263. DOI: 10.1142/s0217984922501263
Su L, Wang Q, Xiang P, Yin D, Ding X, Liu L, Zhao X (2022) Development of nitrile rubber/eucommia ulmoides gum composites for controllable dynamic damping and sound absorption performance. RSC Advances 12(1): 21503-21511. DOI: 10.1039/d2ra03597a
Sun Y, Hua B (2018) Performance comparison of 2-1-3, 1-3 and 1-3-2 piezoelectric composite transducers by finite element method. Condensed Matter Physics 21(1): 13702. DOI: 10.5488/cmp.21.13702
Sun Y, Hua B (2022) System error calculation and analysis of underwater sound absorption coefficient measurement experiment. Applied Acoustics 186: 108489. DOI: 10.1016/j.apacoust.2021.108489
Sun Y, Li ZH, Huang AG, Li QH (2015) Semi-active control of piezoelectric coating’s underwater sound absorption by combining design of the shunt impedances. Journal of Sound and Vibration 355(11): 19-38. DOI: 10.1016/j.jsv.2015.06.036
Tang J, Bai YT, Yan L, Wang WJ (2022) GMA phased array for active echo control of underwater target. Applied Acoustics 190: 108646. DOI: 10.1016/j.apacoust.2022.108646
Tao M (2016) Measurement of viscoelastic dynamic parameters of polymer materials under hydrostatic pressure. Journal of Vibration and Shock 35(1): 59-63. (in Chinese) DOI: 10.13465/j.cnki.jvs.2016.06.010
Tao M, Zhuo LK (2011) Effect of hydrostatic pressure on acoustic performance of sound absorption coating. Journal of Shanghai Jiao Tong University 45: 1340-1350. (in Chinese) DOI: 10.16183/j.cnki.jsjtu.2011.09.017
Tsukui T, Hirata S, Hachiya H (2022) Effective roughness on the sea surface for determining variability characteristics of reflected sound waves. Japanese Journal of Applied Physics 61(SG): SG1078. DOI: 10.35848/1347-4065/ac6b80
Wang C (2021) Measurements on acoustic parameters of underwater acoustic materials in the free field at low freauencies and in broadbands. PhD thesis, Harbin Engineering University, Harbin, 57-68
Wang CX, Wen WB, Huang YX, Chen MJ, Lei HS, Fang DN (2016) A novel broadband waterborne acoustic absorber. Aip Advances 6(7): 075107. DOI: 10.1063/1.4958924
Wang MF, Yi KJ, Zhu R (2023) Tunable underwater low-frequency sound absorption via locally resonant piezoelectric metamaterials. Journal of Sound and Vibration 548: 117514. DOI: 10.1016/j.jsv.2022.117514
Wang T, Liu JY, Chen MX (2021a) Underwater sound absorption of a meta-absorption layer with double negativity. Applied Acoustics 181: 108182. DOI: 10.1016/j.apacoust.2021.108182
Wang Y, Zhao HG, Yang HB, Zhong J, Yu DL, Wen JH (2021b) Inverse design of structured materials for broadband sound absorption. Journal of Physics D-Applied Physics 54(26): 265301. DOI: 10.1088/1361-6463/abf373
Wang YR, Miu XH, Jiang H, Chen M (2017) Review on underwater sound absorption materialsand mechanisms. Advances in Mechanics 47: 92-118. (in Chinese)
Wang ZH, Huang YX, Zhang XW, Li L, Chen MJ, Fang DN (2020) Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb. Journal of Sound and Vibration 479: 115375. DOI: 10.1016/j.jsv.2020.115375
Wu HL, Hao CP, Zhang H (2020) Underwater broadband sound insulation with chiral spiral structures. Aip Advances 10(12): 125022. DOI: 10.1063/5.0025486
Wu HL, Zhang H, Hao CP (2021) Reconfigurable spiral underwater sound-absorbing metasurfaces. Extreme Mechanics Letters 47: 101361. DOI: 10.1016/j.eml.2021.101361
Xie K, Chen MX, Li WC, Dong WJ (2020) A unified semi-analytic method for vibration analysis of functionally graded shells of revolution. Thin-Walled Structures 155: 106943. DOI: 10.1016/j.tws.2020.106943
Yang H, Zhao H, Wen J (2022a) Theory and numerical method for the effects of hydrostatic pressure on sound absorption of underwater acoustic coatings with air cavities. Journal of Sound and Vibration 533: 116985. DOI: 10.1016/j.jsv.2022.116985
Yang J, Zhao X, Wang K, Song H, Cui Z (2022b) Influence of deformation on sound-absorbing performance under hydrostatic pressure. The International Journal of Acoustics and Vibration 27(11): 344-353. https://doi.org/10.20855/ijav.2022.27.41876
Yang M, Sheng P (2017) Sound absorption structures: From porous media to acoustic metamaterials. Annual Review of Materials Research 47(1): 83-114. DOI: 10.1146/annurev-matsci-070616-124032
Ye CZ, Liu XW, Xin FX, Lu TJ (2018) Influence of hole shape on sound absorption of underwater anechoic layers. Journal of Sound and Vibration 426: 54-74. DOI: 10.1016/j.jsv.2018.04.008
Zeqiri B, Scholl W, Robinson SP (2010) Measurement and testing of the acoustic properties of materials: a review. Metrologia 47: 156-171. DOI: 10.1088/0026-1394/47/2/s13
Zhang C, He S, Yi S (2017) Model and absorption performance of anechoic coating embedding sphere cavities. Journal of Ship Mechanics 21(2): 99-106. (in Chinese) DOI: 10.3969/j.issn.1007-7294.2017.01.012
Zhang H (2012) Theoretical acoustics. Higher Education Press, Beijing, 117-151. (in Chinese)
Zhang H, Wen JH, Xiao Y, Wang G, Wen XS (2015) Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches. Journal of Sound and Vibration 343: 104-120. DOI: 10.1016/j.jsv.2015.01.019
Zhang TD, Liu SW, He X, Huang H, Hao KD (2020a) Underwater target tracking using forward-looking sonar for autonomous underwater vehicles. Sensors 20(1): 102. DOI: 10.3390/s20010102
Zhang XH, Qu ZG, Wang H (2020b) Engineering acoustic metamaterials for sound absorption: From uniform to gradient structures. Iscience 23(5): 101110. DOI: 10.1016/j.isci.2020.101110
Zhang Y, Pan J, Chen K, Zhong J (2018) Subwavelength and quasiperfect underwater sound absorber for multiple and broad frequency bands. The Journal of the Acoustical Society of America 144(2): 648-659. DOI: 10.1121/1.5048797
Zhang YB, Ren CY, Zhu X (2013) Research on vibration and sound radiation from submarine functionally graded material nonpressure cylindrical shell. 4th International Conference on Manufacturing Science and Engineering, Dalian, China, 3046-3049
Zhang YN, Cheng L (2021) Ultra-thin and broadband low-frequency underwater acoustic meta-absorber. International Journal of Mechanical Sciences 210: 106732. DOI: 10.1016/j.ijmecsci.2021.106732
Zhang ZF, Li SD, Wang JX, Huang QB (2021) Low-frequency broadband absorption of semi-active composite anechoic coating with subwavelength piezoelectric arrays in hydrostatic environments. Results in Physics 30: 104879. DOI: 10.1016/j.rinp.2021.104879
Zhao D, Zhao HG, Yang HB, Wen JH (2018) Optimization and mechanism of acoustic absorption of Alberich coatings on a steel plate in water. Applied Acoustics 140: 183-187. DOI: 10.1016/j.apacoust.2018.05.027
Zhao H, Liu Y, Wen J, Yu D, Wen X (2007) Tri-component phononic crystals for underwater anechoic coatings. Physics Letters A 367: 224-232. DOI: 10.1016/j.physleta.2007.02.048
Zhao HG, Wen JH, Yang HB, Lv LM, Wen XS (2014) Backing effects on the underwater acoustic absorption of a viscoelastic slab with locally resonant scatterers. Applied Acoustics 76(3): 48-51. DOI: 10.1016/j.apacoust.2013.07.022
Zhong HB, Gu YH, Bao B, Wang Q, Wu JH (2019a) 2D underwater acoustic metamaterials incorporating a combination of particle-filled polyurethane and spiral-based local resonance mechanisms. Composite Structures 220(11): 1-10. DOI: 10.1016/j.compstruct.2019.03.091
Zhong HB, Tian YJ, Gao NS, Lu K, Wu JH (2021) Ultra-thin composite underwater honeycomb-type acoustic metamaterial with broadband sound insulation and high hydrostatic pressure resistance. Composite Structures 277: 114603. DOI: 10.1016/j.compstruct.2021.114603
Zhong J, Zhao HG, Yang HB, Wang Y, Yin JF, Wen JH (2019b) Theoretical requirements and inverse design for broadband perfect absorption of low-frequency waterborne sound by ultrathin metasurface. Scientific Reports 9: 1181. DOI: 10.1038/s41598-018-37510-w
Zhou S, Fang Z (2022) Optimization design of acoustic performance of underwater anechoic coatings. Acoustics Australia 50(3): 297-313. DOI: 10.1007/s40857-022-00267-4
Zhu B, Huang X (2012) Key technologies for submarine stealth design of acoustic coating. Shanghai Jiao Tong University Press, Shanghai, 75-80
Zhu Y, Zhao XY, Mei ZY, Li HT, Wu DJ (2023) Investigation of the underwater absorption and reflection characteristics by using a double-layer composite metamaterial. Materials 16(1): 49. DOI: 10.3390/ma16010049
Zhu ZJ, Hu N, Wu JY, Li WX, Zhao JB, Wang MF, Zeng FZ, Dai HJ, Zheng YJ (2022) A review of underwater acoustic metamaterials for underwater acoustic equipment. Frontiers in Physics 10: 1068833. DOI: 10.3389/fphy.2022.1068833
Zou J, Shen Y, Yang JB, Qiu XJ (2006) A note on the prediction method of reverberation absorption coefficient of double layer micro-perforated membrane. Applied Acoustics 67(2): 106-111. DOI: 10.1016/j.apacoust.2005.05.004

Memo

Memo:
Received date:2023-12-22;Accepted date:2024-1-22。
Foundation item:Supported by the National Natural Science Foundation of China (Grant No. 52271309), Natural Science Foundation of Heilongjiang Province of China (Grant No. YQ2022E104), and Doctoral Science and Technology Innovation Fund of Harbin Engineering University (Grant No. 3072023GIP0302).
Corresponding author:Guoyong Jin,E-mail:guoyongjin@hrbeu.edu.cn
Last Update: 2025-02-26