|Table of Contents|

Citation:
 Sara Ramos-Marin,C. Guedes Soares.Review of Wave Energy Resource Characterisation, Metrics, and Global Assessments[J].Journal of Marine Science and Application,2025,(1):53-75.[doi:10.1007/s11804-024-00545-9]
Click and Copy

Review of Wave Energy Resource Characterisation, Metrics, and Global Assessments

Info

Title:
Review of Wave Energy Resource Characterisation, Metrics, and Global Assessments
Author(s):
Sara Ramos-Marin C. Guedes Soares
Affilations:
Author(s):
Sara Ramos-Marin C. Guedes Soares
Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
Keywords:
Marine energyWave resource assessmentWave energy converterNumerical wave modelsWave power densityWEC performance
分类号:
-
DOI:
10.1007/s11804-024-00545-9
Abstract:
This paper provides an overview of the global wave resource for energy exploration. The most popular metrics and estimators for wave energy resource characterization have been compiled and classified by levels of energy exploration. A review of existing prospective wave energy resource assessments worldwide is also given, and those studies have been collated and classified by continent. Finally, information about forty existing open sea wave energy test sites worldwide and their characteristics is depicted and displayed on a newly created global map. It has been found that wave power density is still the most consensual metric used for wave energy resource assessment purposes among researchers. Nonetheless, to accomplish a comprehensive wave resource assessment for exploitation, the computation of other metrics at the practicable, technical, and socio-economic levels has also been performed at both spatial and temporal domains. Overall, regions in latitudes between 40° and 60° of both hemispheres are those where the highest wave power density is concentrated. Some areas where the most significant wave power density occurs are in offshore regions of southern Australia, New Zealand, South Africa, Chile, the British Isles, Iceland, and Greenland. However, Europe has been the continent where most research efforts have been done targeting wave energy characterisation for exploitation.

References:

Aboobacker VM, Shanas PR, Alsaafani MA, Albarakati AMA (2017) Wave energy resource assessment for Red Sea. Renewable Energy 114: 46-58. https://doi.org/10.1016/j.renene.2016.09.073
ABP MER (2008) Atlas of UK Marine Renewable Energy Resources. http://www.renewables-atlas.info/ [Accessed 12 Nov 2021]
Aderinto T, Li H (2019) Review on power performance and efficiency of wave energy converters. Energies 12(22). https://doi.org/10.3390/en12224329
Ahamed R, McKee K, Howard I (2020) Advancements of wave energy converters based on power take off (PTO) systems: A review. Ocean Engineering 204: 107-248. https://doi.org/10.1016/j.oceaneng.2020.107248
Ahn S, Haas KA, Neary VS (2019) Wave energy resource classification system for US coastal waters. Renewable and Sustainable Energy Reviews 104: 54-68. https://doi.org/10.1016/j.rser.2019.01.017
Ahn S, Haas KA, Neary VS (2020) Wave energy resource characterization and assessment for coastal waters of the United States. Applied Energy 267(3): 114922. https://doi.org/10.1016/j.apenergy.2020.114922
Ahn S, Neary VS, Haas KA (2022) Global wave energy resource classification system for regional energy planning and project development. Renewable and Sustainable Energy Reviews 162. https://doi.org/10.1016/j.rser.2022.112438
Akpinar A, Bing?lbali B, van Vledder GP (2017) Long-term analysis of wave power potential in the Black Sea, based on 31-year SWAN simulations. Ocean Engineering 130: 482-497
Alam M, Kayes I, Hasan A, Shahriar T, Habib MA (2024) Exploring SAARC’s ocean energy potential: Current status and future policies. Energy Reports 11: 754-778. https://doi.org/10.1016/j.oceaneng.2016.12.023
Alaoui C (2019) Review and assessment of offshore renewable energy resources in Morocco’s coastline. Cogent Engineering 6(1). https://doi.org/10.1080/23311916.2019.1654659
Albuquerque J, Antolinez JAA, Méndez FJ, Coco G (2022) On the projected changes in New Zealand’s wave climate and its main drivers. New Zealand Journal of Marine and Freshwater Research 58(1): 89-126. https://doi.org/10.1080/00288330.2022.2135116
Alday M, Accensi M, Ardhuin F, Dodet G (2021) A global wave parameter database for geophysical applications. Part 3: Improved forcing and spectral resolution. Ocean Modelling 166. https://doi.org/10.1016/j.ocemod.2021.101848
Amarouche K, Akpinar A, Bachari NEI, Houma F (2020) Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast. Renewable Energy 153: 840-860. https://doi.org/10.1016/j.renene.2020.02.040
Andersen K, Chapman A, Hareide NR, Folkestad AO, Sparrevik E, Langhamer O (2009) Environmental Monitoring at the Maren Wave Power Test Site off the Island of Runde, Western Norway: Planning and Design. In: Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweeden 1029-1038
Arinaga RA, Cheung KF (2012) Atlas of global wave energy from 10 years of reanalysis and hindcast data. Renewable Energy 39(1): 49-64. https://doi.org/10.1016/j.renene.2011.06.039
Atan R, Goggins J, Nash S (2016) A detailed assessment of the wave energy resource at the Atlantic Marine Energy Test Site. Energies 9(11). https://doi.org/10.3390/en9110967
Atan R, Goggins J, Nash S (2018) Galway Bay-The 1/4 scale wave energy test site? A detailed wave energy resource assessment and investigation of scaling factors. Renewable Energy 119: 217-234. https://doi.org/10.1016/j.renene.2017.11.090
Australian Marine Energy Atlas [online] (2022) https://nationalmap.gov.au/ [Accessed 4 Nov 2022]
Ayat B (2013) Wave power atlas of Eastern Mediterranean and Aegean Seas. Energy 54: 251-262. https://doi.org/10.1016/j.energy.2013.02.060
Barstow S, M?rk G, L?nseth L, Mathisen JP (2009) WorldWaves wave energy resource assessments from the deep ocean to the coast. Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden 149-159
Barstow S, M?rk G, L?nseth L, Schj?lberg P, Machado U, Athanassoulis G, Belibassakis K, Gerostathis T, Stefanakos C, Spaan G (2003) WORLDWAVES: Fusion of data from many sources in a user-friendly software package for timely calculation of wave statistics in global coastal waters. Proceedings of the International Offshore and Polar Engineering Conference 1481-1488
Barstow S, M?rk G, Mollison D, Cruz J (2008) The Wave Energy Resource. In: J. Cruz, ed. Ocean Wave Energy: Current Status and Future Perspectives. Berlin, Heidelberg: Springer Berlin Heidelberg 93-132. https://doi.org/10.1007/978-3-540-74895-3_4
Barua A, Salauddin Rasel M (2024) Advances and challenges in ocean wave energy harvesting. Sustainable Energy Technologies and Assessments 61: 103599. https://doi.org/10.1016/j.seta.2023.103599
Bento AR, Martinho P, Campos R, Guedes Soares C (2011) Modelling wave energy resources in the Irish West Coast. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE 945-953. https://doi.org/10.1115/OMAE2011-50346
Bento AR, Martinho P, Guedes Soares C (2012) Modelling wave energy for the north coast of Spain. Maritime Engineering and Technology-Proceedings of 1st International Conference on Maritime Technology and Engineering 563-570
Bento AR, Martinho P, Guedes Soares C (2018) Wave energy assessment for Northern Spain from a 33-year hindcast. Renewable Energy 127: 322-333. https://doi.org/10.1016/j.renene.2018.04.049
Bento AR, Rusu E, Martinho P, Guedes Soares C (2014) Assessment of the changes induced by a wave energy farm in the nearshore wave conditions. Computers and Geosciences 71(1): 50-61. https://doi.org/10.1016/j.cageo.2014.03.006
Bernardino M, Rusu L, Guedes Soares C (2017) Evaluation of the wave energy resources in the Cape Verde Islands. Renewable Energy 101: 316-326. https://doi.org/10.1016/j.renene.2016.08.040
Bertram DV, Tarighaleslami AH, Walmsley MRW, Atkins MJ, Glasgow GDE (2020) A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites. Renewable and Sustainable Energy Reviews 132 (March): 110011. https://doi.org/10.1016/j.rser.2020.110011
Besio G, Mentaschi L, Mazzino A (2016) Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast. Energy 94: 50-63. https://doi.org/10.1016/j.energy.2015.10.044
Bhaskaran S, Verma AS, Goupee AJ, Bhattacharya S, Nejad AR, Shi W (2023) Comparison of extreme wind and waves using different statistical methods in 40 offshore wind energy lease areas worldwide. Energies 16(19). https://doi.org/10.3390/en16196935
Bhuiyan MA, Hu P, Khare V, Hamaguchi Y, Thakur BK, Rahman MK (2022) Economic feasibility of marine renewable energy: Review. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2022.988513
Bj?rkqvist JV, Lukas I, Alari V, van Vledder GP, Hulst S, Pettersson H, Behrens A, M?nnik A (2018) Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea. Ocean Engineering 152: 57-71. https://doi.org/10.1016/j.oceaneng.2018.01.048
Blue Accelerator [online] (2022) https://www.blueaccelerator.be/ [Accessed 16 Nov 2022]
Bozzi S, Besio G, Passoni G (2018) Wave power technologies for the Mediterranean offshore: Scaling and performance analysis. Coastal Engineering 136 (January): 130-146. https://doi.org/10.1016/j.coastaleng.2018.03.001
Cahill BG, Lewis T (2013) Wave energy resource characterisation of the Atlantic Marine Energy Test Site. International Journal of Marine Energy 1: 3-15. https://doi.org/10.1016/j.ijome.2013.05.001
Caires S, Sterl A, Komen G, Swail VR (2004) The web-based KNMI/ERA-40 global wave climatology atlas. Bulletin of the World Meteorological Organization 53(1996): 142-146
Caires S, Sterl A (2005) 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. Journal of Climate 18(7): 1032-1048. https://doi.org/10.1175/JCLI-3312.1
Carbon Trust [online] (2012) UK Wave Resource Study. https://www.marineenergywales.co.uk/wp-content/uploads/2016/01/Carbon-Trust-UK-wave-energy-resource-Oct-20121.pdf [Accessed 16 Nov 2022]
Carnegie [online] (2022) Garden Island Microgrid (WA). https://www.carnegiece.com/portfolio/garden-island-microgrid-wa/ [Accessed 16 Nov 2022]
CEPS [online] (2022) Wave Energy Test Site. https://ceps.unh.edu/facility/wave-energy-test-site [Accessed 16 Nov 2022]
Chávez V, Bárcenas JF, Martínez ML, Mateos E, Zú?iga-Ríos A, Guimarais M, Wojtarowski A, Landgrave R, Ceballos Canché CH, Silva R (2023) Potential sites for the use of ocean energy in the Mexican Caribbean. Energy Sources, Part B: Economics, Planning and Policy 18(1). https://doi.org/10.1080/15567249.2022.2160524
Chawla A, Spindler DM, Tolman HL (2013) Validation of a thirty-year wave hindcast using the Climate Forecast System Reanalysis winds. Ocean Modelling 70: 189-206. https://doi.org/10.1016/j.ocemod.2012.07.005
Chen W, Liu J, Li J, Sun L, Li B, Xing H, Shi P (2022) Wave energy assessment for the nearshore region of the northern South China Sea based on in situ observations. Energy Reports 8: 149-158. https://doi.org/10.1016/j.egyr.2022.03.068
Chen Z, Yu H, Hu M, Meng G, Wen C (2013) A review of offshore wave energy extraction system. Advances in Mechanical Engineering 2013. https://doi.org/10.1155/2013/623020
Cherneva Z, Andreeva N, Pilar P, Valchev N, Petrova P, Guedes Soares C (2008) Validation of the WAMC4 wave model for the Black Sea. Coastal Engineering 55(11): 881-893. https://doi.org/10.1016/j.coastaleng.2008.02.028
Chiri H, Pacheco M, Rodriguez G (2013) Spatial variability of wave energy resources around the Canary Islands. WIT Transactions on Ecology and the Environment 169: 15-26. https://doi.org/10.2495/13CP0021
Christakos K, Lavidas G, Gao Z, Bj?rkqvist JV (2024) Long-term assessment of wave conditions and wave energy resource in the Arctic Ocean. Renewable Energy 220. https://doi.org/10.1016/j.renene.2023.119678
Cie?likiewicz W, Paplińska-Swerpel B (2008) A 44-year hindcast of wind wave fields over the Baltic Sea. Coastal Engineering 55(11): 894-905. https://doi.org/10.1016/j.coastaleng.2008.02.017
Clemente D, Rosa-Santos P, Taveira-Pinto F (2021) On the potential synergies and applications of wave energy converters: A review. Renewable and Sustainable Energy Reviews 135 (July 2020): 110162. https://doi.org/10.1016/j.rser.2020.110162
Copernicus Global Database [online] (2022) https://data.marine.copernicus.eu/viewer [Accessed 4 Nov 2022]
Cornett A (2009) A global wave energy resource assessment. Proceedings of The Eighteenth International Offshore and Polar Engineering Conference, Vancouver, Canada 59-64
CSIRO [online] (2022) Wave Energy Atlas for Australia. http://awavea.csiro.au/ [Accessed 18 Nov 2022]
Dallman AN, Neary VS (n.d.) Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data 2nd Edition (Part 2)
Dalton GJ, Alcorn R, Lewis T (2010) Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America. Renewable Energy 35(2): 443-455. https://doi.org/10.1016/j.renene.2009.07.003
Don Ross (1995) Power of the Waves. Oxford University Press. New York, USA: Oxford University Press
Das Neves Guerreiro R, Chandare S (2010) Caracterización del recurso undimotriz en el litoral maritimo Argentino. In: Congreso y Exhibición Mundial de Ingenieria. Buenos Aires
Emmanouil G, Galanis G, Kalogeri C, Zodiatis G, Kallos G (2016) 10-year high resolution study of wind, sea waves and wave energy assessment in the Greek offshore areas. Renewable Energy 90: 399-419. https://doi.org/10.1016/j.renene.2016.01.031
ESBI [online] (2005) Accessible Wave Energy Resource Atlas: Ireland. https://www.marine.ie/sites/default/files/MIFiles/Docs/General/waveatlas.pdf [Accessed 16 Nov 2022]
Fairley I, Lewis M, Robertson B, Hemer M, Masters I, Horrillo-Caraballo J, Karunarathna H, Reeve DE (2020) A classification system for global wave energy resources based on multivariate clustering. Applied Energy 262. https://doi.org/10.1016/j.apenergy.2020.114515
Fairley I, Smith HCM, Robertson B, Abusara M, Masters I (2017) Spatio-temporal variation in wave power and implications for electricity supply. Renewable Energy 114: 154-165. https://doi.org/10.1016/j.renene.2017.03.075
Fang Y, Wu H, Zhou Q, Jiang B, Wang X (2022) A detailed investigation into the wave energy resource at a small-scale ocean energy test site in China. Frontiers in Energy Research 10. https://doi.org/10.3389/fenrg.2022.883553
Fernández Prieto L, Rodríguez Rodríguez G, Schallenberg Rodríguez J (2019) Wave energy to power a desalination plant in the north of Gran Canaria Island: Wave resource, socioeconomic and environmental assessment. Journal of Environmental 1Management 231 (November 2017): 546-551. https://doi.org/10.1016/j.jenvman.2018.10.071
Ferrari F, Besio G, Cassola F, Mazzino A (2020) Optimized wind and wave energy resource assessment and offshore exploitability in the Mediterranean Sea. Energy 190: 116447. https://doi.org/10.1016/j.jenvman.2018.10.071
Folley M, Cornett A, Holmes B, Liria P, Lenee-Bluhm P (2012) Standardising resource assessment for wave energy converters. 4th International Conference on Ocean Energy 1-7
Gallutia D, Tahmasbi Fard M, Gutierrez Soto M, He JB (2022) Recent advances in wave energy conversion systems: From wave theory to devices and control strategies. Ocean Engineering 252. https://doi.org/10.1016/j.oceaneng.2022.111105
García Medina G, Yang Z, Li N, Cheung KF, Lutu-McMoore E (2023) Wave climate and energy resources in American Samoa from a 42-year high-resolution hindcast. Renewable Energy 210: 604-617. https://doi.org/10.1016/j.renene.2023.03.031
Gaslikova L, Weisse R (2006) Estimating near-shore wave statistics from regional hindcasts using downscaling techniques. Ocean Dynamics 56(1): 26-35. https://doi.org/10.1007/s10236-005-0041-2
Gaudin C, Lowe R, Draper S, Hansen J, Wolgamot H, O’Loughlin C, Fievez J, Taylor D, Pichard A (2018) A Wave Energy Research Centre in Albany, Australia. In: Proceedings of the 4th Asian Wave and Tidal Energy Conference (AWTEC 2018). Taipei. https://tethys-engineering.pnnl.gov/sites/default/files/publications/AWTEC2018-371.pdf
Gleizon P, Campuzano F, Carracedo P, Martinez A, Goggins J, Atan R, Nash S (2017) Wave Energy Resources Along the European Atlantic Coast. In: Marine Renewable Energy 37-69. https://doi.org/10.1007/978-3-319-53536-4_2
Goddijn-Murphy L, Míguez BM, McIlvenny J, Gleizon P (2015) Wave energy resource assessment with AltiKa satellite altimetry: A case study at a wave energy site. Geophysical Research Letters 42(13): 5452-5459. https://doi.org/10.1002/2015GL064490
Goharnejad H, Nikaein E, Perrie W (2021) Assessment of wave energy in the Persian Gulf: An evaluation of the impacts of climate change. Oceanologia 63(1): 27-39. https://doi.org/10.1016/j.oceano.2020.09.004
Gon?alves M, Guedes Soares C (2021) Assessment of the wave energy resource in the Azores coastal area. In: Developments in Renewable Energies Offshore 26-33
Gon?alves M, Martinho P, Guedes Soares C (2014a) Wave energy conditions in the western French coast. Renewable Energy 62: 155-163. https://doi.org/10.1016/j.renene.2013.06.028
Gon?alves M, Martinho P, Guedes Soares C (2014b) Assessment of wave energy in the Canary Islands. Renewable Energy 68: 774-784
Gon?alves M, Martinho P, Guedes Soares C (2018) A 33-year hindcast on wave energy assessment in the western French coast. Energy 165: 790-801. https://doi.org/10.1016/j.renene.2014.03.017
Gon?alves M, Martinho P, Guedes Soares C (2020) Wave energy assessment based on a 33-year hindcast for the Canary Islands. Renewable Energy 152: 259-269. https://doi.org/10.1016/j.renene.2014.03.017
Gorr-Pozzi E, García-Nava H, Larranaga M, Jaramillo-Torres MG, Verduzco-Zapata MG (2021) Wave energy resource harnessing assessment in a subtropical coastal region of the Pacific. Journal of Marine Science and Engineering 9(11): 1264. https://doi.org/10.3390/jmse9111264
Guedes Soares C (2008) Hindcast of dynamic processes of the ocean and coastal areas of Europe. Coastal Engineering 55(11): 825-826
Guedes Soares C, Bhattacharjee J, Tello M, Pietra L (2013). Review and classification of wave energy converters. Maritime Engineering and Technology 585-594
Guedes Soares C, Weisse R, Carretero JC, Alvarez E (2002) A 40 years hindcast of wind, sea level and waves in European waters. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE 2 (June): 669-675
Guillou N, Chapalain G (2020) Assessment of wave power variability and exploitation with a long-term hindcast database. Renewable Energy 154: 1272-1282. https://doi.org/10.1016/j.renene.2020.03.076
Guillou N, Lavidas G, Chapalain G (2020) Wave energy resource assessment for exploitation-A review. Journal of Marine Science and Engineering 8(9). https://doi.org/10.3390/jmse8090705
Gunn K, Stock-Williams C (2012) Quantifying the global wave power resource. Renewable Energy 44: 296-304. https://doi.org/10.1016/j.renene.2012.01.101
Guo B, Ringwood JV (2021) A review of wave energy technology from a research and commercial perspective. IET Renewable Power Generation. https://doi.org/10.1049/rpg2.12302
Hemer MA, Katzfey J, Trenham CE (2013) Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Modelling 70: 221-245. https://doi.org/10.1016/j.ocemod.2012.09.008
Henfridsson U, Neimane V, Strand K, Kapper R, Bernhoff H, Danielsson O, Leijon M, Sundberg J, Thorburn K, Ericsson E, Bergman K (2007) Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak. Renewable Energy 32(12): 2069-2084. https://doi.org/10.1016/j.renene.2006.10.006
Hidromod (2020) MARENDATA [online]. marendata.eu [Accessed 18 Dec 2021]
Hogben N, Dacunha NM, O. GF (1986) Global wave statistics. British Maritime Technology, London
Hughes MG, Heap AD (2010) National-scale wave energy resource assessment for Australia. Renewable Energy 35(8): 1783-1791. https://doi.org/10.1016/j.renene.2009.11.001
Ibarra-Berastegi G, Sáenz J, Ulazia A, Serras P, Esnaola G, Garcia-Soto C (2018) Electricity production, capacity factor, and plant efficiency index at the Mutriku wave farm (2014-2016). Ocean Engineering 147: 20-29. https://doi.org/10.1016/j.oceaneng.2017.10.018
Ibarra-Berastegi G, Ulazia A, Sáenz J, Serras P, González Roji SJ, Esnaola G, Iglesias G (2021) The power flow and the wave energy flux at an operational wave farm: Findings from Mutriku, Bay of Biscay. Ocean Engineering 227 (April): 1-17. https://doi.org/10.1016/j.oceaneng.2021.108654
IEA-OES (2021) An International Evaluation and Guidance Framework for Ocean Energy Technology
IEA-OES (2023) Annual Report: An Overview of Ocean Energy Activities in 2022
IEG (2019) The test site for MRE in Galicia
Iglesias G, Carballo R (2010) Wave power for La Isla Bonita. Energy 35(12): 5013-5021. https://doi.org/10.1016/j.energy.2010.08.020
Iglesias G, Carballo R (2011) Wave resource in El Hierro-an island towards energy self-sufficiency. Renewable Energy 36(2): 689-698. https://doi.org/10.1016/j.renene.2010.08.021
Inman DL, Brush BM (1973) The coastal challenge. Science (New York, N. Y.) 181(4094): 20-32. https://doi.org/10.1126/science.181.4094.20
International Waters (2020) KRISO-WETS [online]. https://www.internationalwaters.info/kriso-wets-korea-research-institute-of-ships-ocean-engineering-wave-energy-test-site [Accessed 27 Feb 2024]
IRENA (2020) Innovation outlook: ocean energy technologies
IRENA (2021) Offshore renewables: an action agenda for deployment
IRENA (2023) Renewable Power Generation Costs in 2022
Isaacs JD, Seymour RJ (1973) The ocean as a power resource. International Journal of Environmental Studies 4(1-4): 201-205. https://doi.org/10.1080/00207237308709563
Jadidoleslam N, ?zger M, A?iralio?lu N (2016) Wave power potential assessment of Aegean Sea with an integrated 15-year data. Renewable Energy 86: 1045-1059. https://doi.org/10.1016/j.renene.2015.09.022
Joensen B, Niclasen BA, Bingham HB (2021) Wave power assessment in Faroese waters using an oceanic to nearshore scale spectral wave model. Energy 235. https://doi.org/10.1016/j.energy.2021.121404
Kamranzad B, Amarouche K, Akpinar A (2022) Linking the long-term variability in global wave energy to swell climate and redefining suitable coasts for energy exploitation. Scientific Reports 12(1). https://doi.org/10.1038/s41598-022-18935-w
Kamranzad B, Chegini V, Etemad-Shahidi A (2016a) Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves. Renewable Energy 94: 341-352. https://doi.org/10.1016/j.renene.2016.03.084
Kamranzad B, Etemad-Shahidi A, Chegini V (2016b) Sustainability of wave energy resources in southern Caspian Sea. Energy 97: 549-559. https://doi.org/10.1016/j.energy.2015.11.063
Kamranzad B, Hadadpour S (2020) A multi-criteria approach for selection of wave energy converter/location. Energy 204: 117924. https://doi.org/10.1016/j.energy.2020.117924
Kamranzad B, Lin P (2020) Sustainability of wave energy resources in the South China Sea based on five decades of changing climate. Energy 210. https://doi.org/10.1016/j.energy.2020.118604
Kim G, Lee ME, Lee KS, Park JS, Jeong WM, Kang SK, Soh JG, Kim H (2012) An overview of ocean renewable energy resources in Korea. Renewable and Sustainable Energy Reviews 16(4): 2278-2288. https://doi.org/10.1016/j.rser.2012.01.040
Kinsman B (1965) Wind waves, their generation and propagation on the ocean surface. New Jersey: Prentice-Hall
Kozyrakis GV, Spanoudaki K, Varouchakis EA (2023) Long-term wave energy potential estimation in the Aegean and Ionian seas using dynamic downscaling and wave modelling techniques. Applied Ocean Research (131): 103446. https://doi.org/10.1016/j.apor.2022.103446
Krogstad HE, Barstow FS (1999) Satellite wave measurements for coastal engineering applications. Coastal Engineering 37(3-4): 283-307. https://doi.org/10.1016/S0378-3839(99)00030-7
Lavidas G, Kamranzad B (2021) Assessment of wave power stability and classification with two global datasets. International Journal of Sustainable Energy 40(6): 514-529. https://doi.org/10.1080/14786451.2020.1821027
Lavidas G, Polinder H (2019) North Sea wave database (NSWD) and the need for reliable resource data: A 38-year database for metocean and wave energy assessments. Atmosphere 10(9): 1-27. https://doi.org/10.3390/atmos10090551
Lavidas G, Venugopal V (2017a) A 35-year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea. Renewable Energy 103: 401-417. https://doi.org/10.1016/j.renene.2016.11.055
Lavidas G, Venugopal V (2017b) Wave energy resource evaluation and characterisation for the Libyan Sea. International Journal of Marine Energy 18: 1-14. https://doi.org/10.1016/j.ijome.2017.03.001
Lavidas G, Venugopal V (2018a) Application of numerical wave models at European coastlines: A review. Renewable and Sustainable Energy Reviews 92: 489-500. https://doi.org/10.1016/j.rser.2018.04.112
Lavidas G, Venugopal V (2018b) Prospects and applicability of wave energy for South Africa. International Journal of Sustainable Energy 37(3): 230-248. https://doi.org/10.1080/14786451.2016.1254216
Lavidas G, Venugopal V (2018c) Prospects and applicability of wave energy for South Africa. International Journal of Sustainable Energy 37(3): 230-248. https://doi.org/10.1080/14786451.2016.1254216
Law-Chune S, Aouf L, Dalphinet A, Levier B, Drillet Y, Drevillon M (2021) WAVERYS: a CMEMS global wave reanalysis during the altimetry period. Ocean Dynamics 71(3): 357-378. https://doi.org/10.1007/s10236-020-01433-w
Leijon M, Bostr?m C, Danielsson O, Gustafsson S, Haikonen K, Langhamer O, Str?mstedt E, St?lberg M, Sundberg J, Svensson O, Tyrberg S, Waters R (2008) Wave energy from the North Sea: Experiences from the lysekil research site. Surveys in Geophysics 29(3): 221-240. https://doi.org/10.1007/s10712-008-9047-x
Liberti L, Carillo A, Sannino G (2013) Wave energy resource assessment in the Mediterranean, the Italian perspective. Renewable Energy 50: 938-949. https://doi.org/10.1016/j.renene.2012.08.023
Lira-Loarca A, Caceres-Euse A, De-Leo F, Besio G (2022) Wave modelling with unstructured mesh for hindcast, forecast and wave hazard applications in the Mediterranean Sea. Applied Ocean Research 122: 103118. https://doi.org/10.1016/j.apor.2022.103118
Liu J, Meucci A, Liu Q, Babanin A V, Ierodiaconou D, Xu X, Young IR (2023) A high-resolution wave energy assessment of southeast Australia based on a 40-year hindcast. Renewable Energy 215. https://doi.org/10.1016/j.renene.2023.118943
L?pez I, Andreu J, Ceballos S, Martínez De Alegría I, Kortabarria I (2013) Review of wave energy technologies and the necessary power-equipment. Renewable and Sustainable Energy Reviews 27: 413-434. https://doi.org/10.1016/j.rser.2013.07.009
Losada IJ, Mendez FJ, Vidal C, Camus P, Izaguirre C (2010) Spatial and temporal variability of nearshore wave energy resources along Spain: Methodology and results. In: MTS/IEEE Seattle, OCEANS 2010: 1-8. https://doi.org/10.1109/OCEANS.2010.5664315
Lucero F, Catalán PA, Ossandón á, Beyá J, Puelma A, Zamorano L (2017) Wave energy assessment in the central-south coast of Chile. Renewable Energy 114: 120-131. https://doi.org/10.1016/j.renene.2017.03.076
Magagna D, Margheritini L, Alessi A, Bannon E, Boelman E, Bould D, Coy V, de Marchi E, Frigaard P, Guedes Soares C, Golightly C, Hals Todalshaug J, Heward M, Hofmann M, Holmes B, Johnstone C, Kamizuru Y, Lewis T, Macadre LM, Maisondieu C, Martini M, Moro A, Nielsen K, Reis V, Robertson S, Schild P, Soede M, Taylor N, Viola I, Wallet N, Wadbled X, Yeats B (2018) Workshop on identification of future emerging technologies in the ocean energy sector. European Commission
Magagna D, Uihlein A (2015) Ocean energy development in Europe: Current status and future perspectives. International Journal of Marine Energy 11: 84-104. https://doi.org/10.1016/j.ijome.2015.05.001
Martínez A, Iglesias G (2020) Wave exploitability index and wave resource classification. Renewable and Sustainable Energy Reviews 134 (July): 110393. https://doi.org/10.1016/j.rser.2020.110393
Masuda Y (1986) An experience of wave power generator through tests and improvement. In: D. v Evans and A.F.O. de Falc?o, eds. Hydrodynamics of Ocean Wave-Energy Utilization. Berlin, Heidelberg: Springer Berlin Heidelberg 445-452
Mattarolo G, Lafon F, Benoit M (2009) Wave energy resource off the French coasts: the ANEMOC database applied to the energy yield evaluation of Wave Energy Converters. In: 8th European Wave and Tidal Energy 247-255
May-Varas N, Robertson B (2020) Global Wave Energy Testing Sites. Seafloor Bathymetry and Slope. https://ir.library.oregonstate.edu/concern/technical_reports/2n49t811b
Mazzaretto OM, Lucero F, Besio G, Cienfuegos R (2020) Perspectives for harnessing the energetic persistent high swells reaching the coast of Chile. Renewable Energy 159: 494-505. https://doi.org/10.1016/j.renene.2020.05.031
Mckenzie C, Stephen K, Xin Z, Wagner M, Wainwright D (2010) Windmills in Antarctica
META [online] (2022) Wales’s National Test Facility. https://www.meta.wales/ [Accessed 16 Nov 2022]
Monárdez P, Acuna H, Scott D (2008) Evaluation of the potential of wave energy in Chile. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE 801-809
Monteforte M, lo Re C, Ferreri GB (2015) Wave energy assessment in Sicily (Italy). Renewable Energy 78: 276-287. https://doi.org/10.1016/j.renene.2015.01.006
MORE-EST [online] (2022) http://www.morenergylab.polito.it/more-est-platform/ [Accessed 4 Nov 2022]
Morim J, Cartwright N, Etemad-Shahidi A, Strauss D, Hemer M (2014) A review of wave energy estimates for nearshore shelf waters off Australia. International Journal of Marine Energy 7: 55-70. https://doi.org/10.1016/j.ijome.2014.09.002
Morim J, Cartwright N, Hemer M, Etemad-Shahidi A, Strauss D (2019) Inter- and intra-annual variability of potential power production from wave energy converters. Energy 169: 1224-1241. https://doi.org/10.1016/j.energy.2018.12.080
M?rk G, Barstow S, Kabuth A, Pontes MT (2010) Assessing the global wave energy potential. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE 3 (June 2010): 447-454
Mouakkir L, el Hou M, Mordane S, Chagdali M (2022) Wave energy potential analysis in the Casablanca-Mohammedia coastal area (Morocco). Journal of Marine Science and Application 21(1): 92-101. https://doi.org/10.1007/s11804-022-00261-2
Neary VS, Ahn S (2023) Global atlas of extreme significant wave heights and relative risk ratios. Renewable Energy 208: 130-140. https://doi.org/10.1016/j.renene.2023.03.079
Neill SP, Lewis MJ, Hashemi MR, Slater E, Lawrence J, Spall SA (2014) Inter-annual and inter-seasonal variability of the Orkney wave power resource. Applied Energy 132: 339-348. https://doi.org/10.1016/j.apenergy.2014.07.023
Neill SP, V?gler A, Goward-Brown AJ, Baston S, Lewis MJ, Gillibrand PA, Waldman S, Woolf DK (2017) The wave and tidal resource of Scotland. Renewable Energy 114(A): 3-17. https://doi.org/10.1016/j.renene.2017.03.027

Memo

Memo:
Received date:2024-6-29;Accepted date:2024-7-29。
Corresponding author:C. Guedes Soares,E-mail:c.guedes.soares@centec.tecnico.ulisboa.pt
Last Update: 2025-02-26