Abdelsalam AM, El-Shorbagy M (2018) Optimization of wind turbines siting in a wind farm using genetic algorithm based local search. Renewable Energy 123: 748-755. https://doi.org/10.1016/j.renene.2018.02.083
Ahmadpour F (2021) Multi objective optimization of performance of small size horizontal axis wind turbine based on NSGA-II. Journal of Mechanical Engineering 50(4(93)): 171-180
AlHamaydeh M, Barakat S, Nasif O (2017) Optimization of Support Structures for Offshore Wind Turbines Using Genetic Algorithm with Domain-Trimming. Mathematical Problems in Engineering 5978375. https://doi.org/10.1155/2017/5978375
AlHamaydeh MH, Barakat SA, Nassif OM (2015) Optimization of quatropod jacket support structures for offshore wind turbines subject to seismic loads using genetic algorithms. Proceedings of the 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2015. 3505-3513, https://doi.org/10.7712/120115.3634.1443
Arany L, Bhattacharya S, Macdonald JHG, Hogan SJ (2016) Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI. Soil Dynamics and Earthquake Engineering 83: 18-32. https://doi.org/10.1016/j.soildyn.2015.12.011
Asadbeigi M, Ghafoorian F, Mehrpooya M, Chegini S, Jarrahian A (2023) A 3D study of the darrieus wind turbine with auxiliary blades and economic analysis based on an optimal design from a parametric investigation. Sustainability 15(5): 4684. https://www.mdpi.com/2071-1050/15/5/4684
Ashuri T (2012) Beyond classical upscaling: integrated aeroservoelastic design and optimization of large offshore wind turbines. Delft: Delft University of Technology
Bae YH, Kim MH (2014) Coupled dynamic analysis of multiple wind turbines on a large single floater. Ocean Engineering 92: 175-187. https://doi.org/10.1016/j.oceaneng.2014.10.001
Bagherpoor T, Xuemin L (2017) Structural optimization design of 2MW composite wind turbine blade. Energy Procedia 105: 1226-1233. https://doi.org/10.1016/j.egypro.2017.03.420
Balty P, Caprace D-G, Waucquez J, Coquelet M, Chatelain P (2020) Multiphysics simulations of the dynamic and wakes of a floating Vertical Axis Wind Turbine. Journal of Physics: Conference Series. IOP Publishing, 1618:062053. https://doi.org/10.1088/1742-6596/1618/6/062053
Bárcena Pasamontes L, Gómez Torres F, Zwick D, Schafhirt S, Muskulus M (2014) Support structure optimization for offshore wind turbines with a genetic algorithm. International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, V09BT09A033. https://doi.org/10.1115/OMAE2014-24252
Benifla V, Adam F (2022) Development of a genetic algorithm code for the design of cylindrical buoyancy bodies for floating offshore wind turbine substructures. Energies 15(3): 1181. https://www.mdpi.com/1996-1073/15/3/1181
Bilbao M, Alba E (2009) Simulated annealing for optimization of wind farm annual profit. 2009 2nd International symposium on logistics and industrial informatics. Piscataway:IEEE, 1-5
Bizzarrini N, Grasso F, Coiro DP (2011) Genetic algorithms in wind turbine airfoil design. EWEA, EWEC2011, Bruxelles, Belgium. ECN-M-11-035
Bontempi F, Li H, Petrini F, Gkoumas K (2008) Basis of design of offshore wind turbines by system decomposition. Proceedings of the 4th International Conference on Advances in Structural Engineering and Mechanics, Jeju, Korea. 26-28
Brommundt M, Krause L, Merz K, Muskulus M (2012) Mooring system optimization for floating wind turbines using frequency domain analysis. Energy Procedia 24: 289-296. https://doi.org/10.1016/j.egypro.2012.06.111
Chan CM, Bai HL, He DQ (2018) Blade shape optimization of the Savonius wind turbine using a genetic algorithm. Applied Energy 213: 148-157. https://doi.org/10.1016/j.apenergy.2018.01.029
Chantharasenawong C, Jongpradist P, Laoharatchapruek S (2011) Preliminary design of 1.5-MW modular wind turbine tower. The 2nd TSME International Conference on Mechanical Engineering, Krabi, Thailad.Citeseer.AEC17
Chehouri A, Younes R, Ilinca A, Perron J (2015) Review of performance optimization techniques applied to wind turbines. Applied energy 142: 361-388. https://doi.org/10.1016/j.apenergy.2014.12.043
Chen WC, Nguyen MH, Chiu WH, Chen TN, Tai PH (2016) Optimization of the plastic injection molding process using the Taguchi method, RSM, and hybrid GA-PSO. The International Journal of Advanced Manufacturing Technology 83(9): 1873-1886. https://doi.org/10.1007/s00170-015-7683-0
Chen Y, Li H, Jin K, Song Q (2013) Wind farm layout optimization using genetic algorithm with different hub height wind turbines. Energy Conversion and Management 70: 56-65. https://doi.org/10.1016/j.enconman.2013.02.007
Chen Z, He Y, Zhao Y, Meng L, He C, Yang H, Han Z, Liu Y (2020) High-order redesign method for wind turbine blade optimization in model test considering aerodynamic similarity. Ocean Engineering 202: 107156. https://doi.org/10.1016/j.oceaneng.2020.107156
Chen Z, Zhao M, Blaabjerg F (2008) Application of genetic algorithm in electrical system optimization for offshore wind farms. Proceedings of the 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Piscataway: IEEE
Cheng YS, Wang Z (2008) Detecting damage to offshore platform structures using the time-domain data. Journal of Marine Science and Application 7(1): 7-14. https://doi.org/10.1007/s11804-008-7046-z
Chew KH, Tai K, Ng EYK, Muskulus M (2015) Optimization of offshore wind turbine support structures using an analytical gradient-based method. Energy Procedia 80: 100-107. https://doi.org/10.1016/j.egypro.2015.11.412
Chew KH, Tai K, Ng EYK, Muskulus M (2016) Analytical gradient-based optimization of offshore wind turbine substructures under fatigue and extreme loads. Marine Structures 47: 23-41. https://doi.org/10.1016/j.marstruc.2016.03.002
Chew KH, Ng E, Tai K, Muskulus M (2014) Offshore wind turbine jacket substructure: A comparison study between four-legged and three-legged designs. J. Ocean Wind Energy 1(2): 74-81
Choe DE, Kim HC, Kim MH (2021) Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades. Renewable Energy 174: 218-235. https://doi.org/10.1016/j.renene.2021.04.025
Chowdhury S, Zhang J, Messac A, Castillo L (2013) Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions. Renewable Energy 52: 273-282. https://doi.org/10.1016/j.renene.2012.10.017
Civelek Z (2020) Optimization of fuzzy logic (Takagi-Sugeno) blade pitch angle controller in wind turbines by genetic algorithm. Engineering Science and Technology, an International Journal 23(1): 1-9. https://doi.org/10.1016/jjestch.2019.04.010
Damiani RR, Song H, Robertson AN, Song H (2013) Assessing the importance of nonlinearities in the development of a substructure model for the wind turbine CAE tool FAST. International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, V008T009A093
Dirlik T (1985) Application of computers in fatigue analysis. Coventry: University of Warwick
Dou S, Pegalajar-Jurado A, Wang S, Bredmose H, Stolpe M (2020) Optimization of floating wind turbine support structures using frequency-domain analysis and analytical gradients. Journal of Physics: Conference Series. 1618(4): 042028, https://doi.org/10.1088/1742-6596/1618/4/042028
Eke G, Onyewudiala J (2010) Optimization of wind turbine blades using genetic algorithm. Global Journal of Researches in Engineering 10(7): 22-26
Emami A, Noghreh P (2010) New approach on optimization in placement of wind turbines within wind farm by genetic algorithms. Renewable Energy 35(7): 1559-1564. https://doi.org/10.1016/j.renene.2009.11.026
Feng J, Shen WZ (2017) Design optimization of offshore wind farms with multiple types of wind turbines. Applied Energy 205: 1283-1297
Foster NF, Dulikravich GS (1997) Three-dimensional aerodynamic shape optimization using genetic and gradient search algorithms. Journal of Spacecraft and Rockets 34(1): 36-42
Furlanetto A, Gomes HM, de Almeida FS (2020) Design optimization of tapered steel wind turbine towers by QPSO algorithm. International Journal of Steel Structures 20(5): 1552-1563. https://doi.org/10.1007/s13296-020-00389-3
Gao X, Yang H, Lin L, Koo P (2015) Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore. Journal of Wind Engineering and Industrial Aerodynamics 139: 89-99. https://doi.org/10.1016/j.jweia.2015.01.018
Gao ZT, Feng XY, Zhang ZT, Liu ZL, Gao XX, Zhang LJ, Li S, Li Y (2022) A brief discussion on offshore wind turbine hydrodynamics problem. Journal of Hydrodynamics 34(1): 15-30. https://doi.org/10.1007/s42241-022-0002-y
Gencturk B, Attar A, Tort C (2012) Optimal Design of Lattice Wind Turbine Towers. Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal. https://doi.org/10.13140/2.1.1976.9924
Geng X, Xu L, He X, Yu J (2021) Graph optimization neural network with spatio-temporal correlation learning for multi-node offshore wind speed forecasting. Renewable Energy 180: 1014-1025. https://doi.org/10.1016/j.renene.2021.08.066
Gentils T, Wang L, Kolios A (2017) Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm. Applied Energy 199: 187-204. https://doi.org/10.1016/j.apenergy.2017.05.009
G??men T, Giebel G, Poulsen NK, S?rensen PE (2019) Possible power of down-regulated offshore wind power plants: The PossPOW algorithm. Wind Energy 22(2): 205-218. https://doi.org/10.1002/we.2279
Gonzalez-Longatt FM, Wall P, Regulski P, Terzija V (2011) Optimal electric network design for a large offshore wind farm based on a modified genetic algorithm approach. IEEE Systems Journal 6(1): 164-172. https://doi.org/10.1109/JSYST.2011.2163027
González JS, Rodriguez AGG, Mora JC, Santos JR, Payan MB (2010) Optimization of wind farm turbines layout using an evolutive algorithm. Renewable Energy 35(8): 1671-1681. https://doi.org/10.1016/j.renene.2010.01.010
Grady S, Hussaini MY, Abdullah MM (2005) Placement of wind turbines using genetic algorithms. Renewable Energy 30(2): 259-270. https://doi.org/10.1016/j.renene.2004.05.007
Gutierrez W, Ruiz-Columbie A, Tutkun M, Castillo L (2017) Impacts of the low-level jet’s negative wind shear on the wind turbine. Wind Energy Science 2(2): 533-545. https://doi.org/10.5194/wes-2-533-2017
H?afele J, Rolfes R (2016) Approaching the ideal design of jacket substructures for offshore wind turbines with a Particle Swarm Optimization algorithm. ISOPE International Ocean and Polar Engineering Conference. ISOPE, ISOPE-I-16-143
Haghi R, Ashuri T, van der Valk PL, Molenaar DP (2014) Integrated multidisciplinary constrained optimization of offshore support structures. Journal of Physics: Conference Series. IOP Publishing, 55:012046. https://doi.org/10.1088/1742-6596/555/1/012046
Hajinezhad Dehkharghani P, Ettefagh MM, Hassannejad R (2021) Mooring damage identification of floating wind turbine using a non-probabilistic approach under different environmental conditions. Journal of Marine Science and Application 20: 156-169. https://doi.org/10.1007/s11804-020-00187-7
Hall M, Buckham B, Crawford C (2013) Evolving offshore wind: A genetic algorithm-based support structure optimization framework for floating wind turbines. 2013 MTS/IEEE OCEANS-Bergen. Piscataway:IEEE, 1-10
Hansen B (2006) Floating wind turbines expand renewable energy possibilities. Civil Engineering Magazine Archive 76(2): 30-30. https://doi.org/10.1061/ciegag.0000893
H?usler M, Owman F (2002) AC or DC for connecting offshore wind farms to the transmission grid?
He F, Wagner M, Zhang L, Shao C, Xu W, Chen W, Yan Y, Li Y (2022) A novel integrated approach for offshore wind power optimization. Ocean Engineering 266: 112827. https://doi.org/10.1016/j.oceaneng.2022.112827
Henderson AR, Witcher D, Morgan CA (2009) Floating support structures enabling new markets for offshore wind energy. Proceedings of the European Wind Energy Conference (EWEC), Marseille, France
Heronemus WE (1972) The United States energy crisis: some proposed gentle solutions. Joint Meeting of the Local Section of The American Society of Mechanical Engineers and The Institute of Electrical and Electronics Engineers, West Springfield, Mass
Hou P, Hu W, Soltani M, Chen C, Chen Z (2017) Combined optimization for offshore wind turbine micro siting. Applied Energy 189: 271-282. https://doi.org/10.1016/j.apenergy.2016.11.083
Hou P, Hu W, Soltani M, Chen Z (2015) Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm. IEEE Transactions on Sustainable Energy 6(4): 1272-1282. https://doi.org/10.1109/TSTE.2015.2429912
Huang L, Fu Y, Guo X (2009) Optimization of electrical connection scheme for large offshore wind farm with genetic algorithm. 2009 International Conference on Sustainable Power Generation and Supply. Piscataway: IEEE, 1-4
Jang HK, Park S, Kim MH, Kin KH, Hong K (2019) Effects of heave plates on the global performance of a multi-unit floating offshore wind turbine. Renewable Energy 134: 526-537. https://doi.org/10.1016/j.renene.2018.11.033
Jin X, Xie S, He J, Lin Y, Wang Y, Wang N (2018) Optimization of tuned mass damper parameters for floating wind turbines by using the artificial fish swarm algorithm. Ocean Engineering 167: 130-141. https://doi.org/10.1016/j.oceaneng.2018.08.031
Ju X, Liu F (2019) Wind farm layout optimization using self-informed genetic algorithm with information guided exploitation. Applied Energy 248: 429-445. https://doi.org/10.1016/j.apenergy.2019.04.084
Jureczko M, Pawlak M, M??yk A (2005) Optimisation of wind turbine blades. Journal of Materials Processing Technology 167(2-3): 463-471. https://doi.org/10.1016/j.jmatprotec.2005.06.055
Kale SA, Varma RN (2014) Aerodynamic design of a horizontal axis micro wind turbine blade using NACA 4412 profile. International Journal of Renewable Energy Research 4(1): 69-72. https://doi.org/10.20508/ijrer.06222
Kampitsis A, Kapasakalis K, Via-Estrem L (2022) An integrated FEA-CFD simulation of offshore wind turbines with vibration control systems. Engineering Structures 254: 113859. https://doi.org/10.1016/j.engstruct.2022.113859
Karimi M, Hall M, Buckham B, Crawford C (2017) A multi-objective design optimization approach for floating offshore wind turbine support structures. Journal of Ocean Engineering and Marine Energy 3(1): 69-87. https://doi.org/10.1007/s40722-016-0072-4
Karthikeyan N, Murugavel KK, Kumar SA, Rajakumar S (2015) Review of aerodynamic developments on small horizontal axis wind turbine blade. Renewable and Sustainable Energy Reviews 42: 801-822. https://doi.org/10.1016/j.rser.2014.10.086
Kaveh A, Sabeti S (2018) Structural optimization of jacket supporting structures for offshore wind turbines using colliding bodies optimization algorithm. The Structural Design of Tall and Special Buildings 27(13): e1494. https://doi.org/10.1002/tal.1494
Kenway G, Martins JRRA (2008) Aerostructural shape optimization of wind turbine blades considering site-specific winds. 12th AIAA/ ISSMO Multidisciplinary Analysis and Optimization Conference. AIAA 2008-6025. https://doi.org/10.2514/6.2008-6025
Kim HC, Kim KH, Kim MH, Hong K (2017a) Global performance of a KRISO semisubmersible multiunit floating offshore wind turbine: Numerical simulation vs. model test. International Journal of Offshore and Polar Engineering 27(1): 70-81. https://doi.org/10.17736/ijope.2017.fvr02
Kim HC, Kim MH, Lee JY, Kim S, Zhang Z (2017b) Global performance analysis of 5MW WindFloat and OC4 Semi-Submersible Floating Offshore Wind Turbines (FOWT) by numerical simulations. ISOPE International Ocean and Polar Engineering Conference. ISOPE, ISOPE-I-17-578
Kirchner-Bossi N, Porté-Agel F (2024) Wind farm power density optimization according to the area size using a novel self-adaptive genetic algorithm. Renewable Energy 220: 119524. https://doi.org/10.1016/j.renene.2023.119524
Lee J, Zhao F (2021) GWEC global wind report 2021. Global wind energy council 15: 16
Lee K-H, Jun S-O, Pak K-H, Lee D-H, Lee K-W, Park J-P (2010) Numerical optimization of site selection for offshore wind turbine installation using genetic algorithm. Current Applied Physics 10(2): S302-S306. https://doi.org/10.1016/j.cap.2009.11.031
Li C, Campbell BK, Liu Y, Yue DKP (2019) A fast multi-layer boundary element method for direct numerical simulation of sound propagation in shallow water environments. Journal of Computational Physics 392: 694-712. https://doi.org/10.1016/j.jcp.2019.04.068
Liao C, Xi G, Xu J (2009) An improved PSO algorithm for solution of constraint optimization problem and its application. Journal of Engineering Thermophysics Rus 24: 256-260
Liao CC, Zhao XL, Xu JZ (2012) Blade layers optimization of wind turbines using FAST and improved PSO Algorithm. Renewable Energy 42: 227-233. https://doi.org/10.1016/j.renene.2011.08.011
Liu Y, Xiao Q, Incecik A, Peyrard C, Wan D (2017) Establishing a fully coupled CFD analysis tool for floating offshore wind turbines. Renewable Energy 112: 280-301. https://doi.org/10.1016/j.renene.2017.04.052
Liu Z, Fan S, Wang Y, Peng J (2021) Genetic-algorithm-based layout optimization of an offshore wind farm under real seabed terrain encountering an engineering cost model. Energy Conversion and Management 245: 114610. https://doi.org/10.1016/j.enconman.2021.114610
Long H, Moe G (2012) Preliminary design of bottom-fixed lattice offshore wind turbine towers in the fatigue limit state by the frequency domain method. Journal of Offshore Mechanics and Arctic Engineering 134(3): 031902. https://doi.org/10.1115/1.4005200
Lumbreras S, Ramos A, Sánchez-Martin P (2015) Offshore wind farm electrical design using a hybrid of ordinal optimization and mixed-integer programming. Wind Energy 18(12): 2241-2258. https://doi.org/10.1002/we.1807
Ma Y, Zhang A, Yang L, Hu C, Bai Y (2019) Investigation on optimization design of offshore wind turbine blades based on particle swarm optimization. Energies 12(10): 1972. https://doi.org/10.3390/en12101972
Malhotra S (2011) Selection, Design and Construction of Offshore Wind Turbine Foundations. Wind Turbines. Edited by Ibrahim Ai-Bahadly. Rijeka: InTech 231-264. https://doi.org/10.5772/15461
Mellal MA, Pecht M (2020) A multi-objective design optimization framework for wind turbines under altitude consideration. Energy Conversion and Management 222: 113212. https://doi.org/10.1016/j.enconman.2020.113212
Micallef D, Rezaeiha A (2021) Floating offshore wind turbine aerodynamics: Trends and future challenges. Renewable and Sustainable Energy Reviews 152: 111696. https://doi.org/10.1016/j.rser.2021.111696
Michailides C, Angelides DC (2012) Modeling of energy extraction and behavior of a Flexible Floating Breakwater. Applied Ocean Research 35: 77-94. https://doi.org/10.1016/j.apor.2011.11.004
Ning A, Petch D (2016) Integrated design of downwind land- based wind turbines using analytic gradients. Wind Energy 19(12): 2137-2152. https://doi.org/10.1002/we.1972
Oest J, S?rensen R, T. Overgaard LC, Lund E (2017) Structural optimization with fatigue and ultimate limit constraints of jacket structures for large offshore wind turbines. Structural and Multidisciplinary Optimization 55(3): 779-793
Oguz E, Clelland D, Day AH, Incecik A, López JA, Sánchez G, Almeria GG (2018) Experimental and numerical analysis of a TLP floating offshore wind turbine. Ocean Engineering 147: 591-605. https://doi.org/10.1016/j.oceaneng.2017.10.052
Oh KY, Kim JY, Lee JS (2013) Preliminary evaluation of monopile foundation dimensions for an offshore wind turbine by analyzing hydrodynamic load in the frequency domain. Renewable Energy 54: 211-218. https://doi.org/10.1016/j.renene.2012.08.007
?zkan R, Gen? MS (2023) Aerodynamic design and optimization of a small-scale wind turbine blade using a novel artificial bee colony algorithm based on blade element momentum (ABC-BEM) theory. Energy Conversion and Management 283: 116937. https://doi.org/10.1016/j.enconman.2023.116937
Pérez-Rúa JA, Lumbreras S, Ramos A, Cutululis NA (2022) Reliability-based topology optimization for offshore wind farm collection system. Wind Energy 25(1): 52-70. https://doi.org/10.1002/we.2660
Pillai AC, Chick J, Johanning L, Khorasanchi M, Pelissier S (2016) Optimisation of offshore wind farms using a genetic algorithm. International Journal of Offshore and Polar Engineering 26(3): 225-234. https://doi.org/10.17736/ijope.2016.mmr16
Polat O, Tuncer IH (2013) Aerodynamic shape optimization of wind turbine blades using a parallel genetic algorithm. Procedia Engineering 61: 28-31. https://doi.org/10.1016/j.proeng.2013.07.088
Pouladi F, Gilani AM, Nikpour B, Salehinejad H (2013) Optimum localization of wind turbine sites using opposition based ant colony optimization. 2013 Sixth International Conference on Developments in eSystems Engineering. Piscataway: IEEE, 21-26. https://doi.org/10.1109/DeSE.2013.13
Pourrajabian A, Dehghan M, Rahgozar S (2021) Genetic algorithms for the design and optimization of horizontal axis wind turbine (HAWT) blades: A continuous approach or a binary one? Sustainable Energy Technologies and Assessments 44: 101022. https://doi.org/10.1016/j.seta.2021.101022
Rezaeiha A, Micallef D (2020) CFD simulation of two tandem floating offshore wind turbines in surge motion. Journal of Physics: Conference Series. IOP Publishing, 1618:052066. https://doi.org/10.1088/1742-6596/1618/5/052066
Ribeiro AFP, Awruch AM, Gomes HM (2012) An airfoil optimization technique for wind turbines. Applied Mathematical Modelling 36(10): 4898-4907. https://doi.org/10.1016/j.apm.2011.12.026
Rizk-Allah RM, Hassanien AE (2023) A hybrid equilibrium algorithm and pattern search technique for wind farm layout optimization problem. ISA Transactions 132: 402-418. https://doi.org/10.1016/j.isatra.2022.06.014
Salcedo-Sanz S, Gallo-Marazuela D, Pastor-Sánchez A, Carro-Calvo L, Portilla-Figueras A, Prieto L (2014) Offshore wind farm design with the Coral Reefs Optimization algorithm. Renewable Energy 63: 109-115. https://doi.org/10.1016/j.renene.2013.09.004
Schafhirt S, Page A, Eiksund GR, Muskulus M (2016) Influence of soil parameters on the fatigue lifetime of offshore wind turbines with monopile support structure. Energy Procedia 94: 347-356. https://doi.org/10.1016/j.egypro.2016.09.194
Schafhirt S, Zwick D, Muskulus M (2014) Reanalysis of jacket support structure for computer-aided optimization of offshore wind turbines with a genetic algorithm. ISOPE International Ocean and Polar Engineering Conference. ISOPE, ISOPE-I-14-174
Schr?der K, Gebhardt C, Rolfes R (2016) Damage localization at wind turbine support structures using sequential quadratic programming for model updating. 8th European Workshop On Structural Health Monitoring, Bilbao. Spain. e-Journal of Nondestructive Testing Vol.21(8). https://www.ndt.net/?id=19944
Settoul S, Zellagui M, Chenni R (2021) A new optimization algorithm for optimal wind turbine location problem in Constantine city electric distribution network based active power loss reduction. Journal of Optimization in Industrial Engineering 14(2): 13-22. https://doi.org/10.22094/joie.2020.1892184.1725
Shen M, Hu Z, Liu G (2016) Dynamic response and viscous effect analysis of a TLP-type floating wind turbine using a coupled aero-hydro-mooring dynamic code. Renewable Energy 99: 800-812. https://doi.org/10.1016/j.renene.2016.07.058
Shen X, Hu P, Chen J, Zhu X, Du Z (2018) The unsteady aerodynamics of floating wind turbine under platform pitch motion. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 232(8): 1019-1036. https://doi.org/10.1177/0957650918766606
Shin J, Baek S, Rhee Y (2020) Wind farm layout optimization using a metamodel and ea/pso algorithm in korea offshore. Energies 14(1): 146. https://doi.org/10.3390/en14010146
Shourangiz-Haghighi A, Haghnegahdar MA, Wang L, Mussetta M, Kolios A, Lander M (2020) State of the art in the optimisation of wind turbine performance using CFD. Archives of Computational Methods in Engineering 27(2): 413-431. https://doi.org/10.1007/s11831-019-09316-0
Si JZ, Sun G, Meng DH (2013) An optimization method for offshore wind turbine blades based on PSO. Acta Aerodyn. Sin. 31: 498-502
Song J, Kim T, You D (2023) Particle swarm optimization of a wind farm layout with active control of turbine yaws. Renewable Energy 206: 738-747. https://doi.org/10.1016/j.renene.2023.02.058
Stieng LES, Muskulus M (2020) Reliability-based design optimization of offshore wind turbine support structures using analytical sensitivities and factorized uncertainty modeling. Wind Energy Science 5(1): 171-198. https://doi.org/10.5194/wes-5-171-2020
Thiry A, Rigo P, Buldgen L, Raboni G, Bair F (2011) Optimization of monopile offshore wind structures. Advances in Marine Structures, 633-642. https://doi.org/10.1201/b10771-77
Uys P, Farkas J, Jarmai K, van Tonder F (2007) Optimisation of a steel tower for a wind turbine structure. Engineering Structures 29(7): 1337-1342. https://doi.org/10.1016/j.engstruct.2006.08.011
Vairavamoorthy K, Ali M (2005) Pipe index vector: A method to improve genetic-algorithm-based pipe optimization. Journal of Hydraulic Engineering 131(12): 1117-1125. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:12(1117)
Van der Giessen M (2021) Feasibility of mooring system optimization for floating wind turbines in deep water based on static analysis. Norwegian: Norwegian University of Science and Technology (NTNU)
Van Der Tempel J, Vugts JH, van Kuik GAM (2006) Design of support structures for offshore wind turbines. Delft:Duwind
Vicini A, Quagliarella D (1999) Airfoil and wing design through hybrid optimization strategies. AIAA Journal 37(5): 634-641. https://doi.org/10.2514/2.764
Wan C, Wang J, Yang G, Gu H, Zhang X (2012) Wind farm micro-siting by Gaussian particle swarm optimization with local search strategy. Renewable Energy 48: 276-286. https://doi.org/10.1016/J.RENENE.2012.04.052
Wan C, Wang J, Yang G, Li X, Zhang X (2009) Optimal micro-siting of wind turbines by genetic algorithms based on improved wind and turbine models. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference. Piscataway: IEEE, 5092-5096
Wan C, Wang J, Yang G, Zhang X (2010) Optimal micro-siting of wind farms by particle swarm optimization. International Conference in Swarm Intelligence. Berlin: Springer, 6145: 198-205. https://doi.org/10.1007/978-3-642-13495-1_25
Wang CM, Utsunomiya T, Wee SC, Choo YS (2010) Research on floating wind turbines: a literature survey. The IES Journal Part A: Civil & Structural Engineering 3(4): 267-277. https://doi.org/10.1080/19373260.2010.517395
Wang L, Wang T-g, Luo Y (2011) Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades. Applied Mathematics and Mechanics 32(6): 739-748. https://doi.org/10.1007/s10483-011-1453-x
Wang W, Caro S, Bennis F, Soto R (2015) Multi-objective robust optimization using a postoptimality sensitivity analysis technique: application to a wind turbine design. Journal of Mechanical Design 137(1): 011403. https://doi.org/10.1115/L4028755
Wen B, Dong X, Tian X, Peng Z, Zhang W, Wei K (2018) The power performance of an offshore floating wind turbine in platform pitching motion. Energy 154: 508-521
Willis DJ, Peraire J, White JK (2007) A combined pFFT- multipole tree code, unsteady panel method with vortex particle wakes. International Journal for Numerical Methods in Fluids 53(8): 1399-1422
Wise AS, Bachynski EE (2020) Wake meandering effects on floating wind turbines. Wind Energy 23(5): 1266-1285. https://doi.org/10.1002/we.2485
Yang H, Zhu Y, Lu Q, Zhang J (2015) Dynamic reliability based design optimization of the tripod sub-structure of offshore wind turbines. Renewable Energy 78: 16-25. https://doi.org/10.1016/j.renene.2014.12.061
Yang J, O’Reilly J, Fletcher JE (2009) Redundancy analysis of offshore wind farm collection and transmission systems. 2009 International Conference on Sustainable Power Generation and Supply. Piscataway:IEEE, 1-7. https://doi.org/10.1109/SUPERGEN.2009.5348163
Yoshida S (2006) Wind turbine tower optimization method using a genetic algorithm. Wind Engineering 30(6): 453-469. https://doi.org/10.1260/030952406779994150
Zhao M, Chen Z, Blaabjerg F (2004) Optimization of electrical system for large DC offshore wind farm by genetic algorithm. Nordic Workshop on Power and Industrial Electronics. Norway, Trondheim, 1-8
Zhao M, Chen Z, Blaabjerg F (2009) Optimisation of electrical system for offshore wind farms via genetic algorithm. IET Renewable Power Generation 3(2): 205-216. https://doi.org/10.1049/iet-rpg:20070112
Zhao M, Chen Z, Hjerrild J (2006) Analysis of the behaviour of genetic algorithm applied in optimization of electrical system design for offshore wind farms. IECON 2006-32nd Annual Conference on IEEE Industrial Electronics. Piscataway: IEEE, 2335-2340. https://doi.org/10.1109/IECON.2006.347333
Ziegler L, Voormeeren S, Schafhirt S, Muskulus M (2015) Sensitivity of wave fatigue loads on offshore wind turbines under varying site conditions. Energy Procedia 80: 193-200. https://doi.org/10.1016/j.egypro.2015.11.422
Zwick D, Muskulus M, Moe G (2012) Iterative optimization approach for the design of full-height lattice towers for offshore wind turbines. Energy Procedia 24: 297-304. https://doi.org/10.1016/j.egypro.2012.06.112