ANSYS AQWA (2016) AQWA user’s manual release 17.0. ANSYS Inc., Canonsburg, USA, 3-64
Benitz MA, Schmidt DP, Lackner MA, Ste M (2014) Comparison of hydrodynamic load predictions between reduced order engineering models and computational fluid dynamics for the OC4-DeepCwind semi-submersible. Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, Volume 9B:Ocean Renewable Energy, San Francisco, USA, P1. DOI:10.1115/OMAE2014-23985
Cutler J, Bashir M, Yang Y, Wang J, Loughney S (2022) Preliminary development of a novel catamaran floating offshore wind turbine platform and assessment of dynamic behaviours for intermediate water depth application. Ocean Engineering 258:111769. DOI:10.1016/j.oceaneng.2022.111769
Coulling AJ, Goupee AJ, Robertson AN, Jonkman JM, Dagher HJ (2013) Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data. Journal of Renewable & Sustainable Energy 5(2):557-569. DOI:10.1063/1.4796197
Ding Q, Li C, Yuan W, Hao W (2019) Effects of heave plate on dynamic response of floating wind turbine spar platform under the coupling effects of wind and wave. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering 39(4):1113-1126. DOI:10.13334/j.0258-8013
Edwards EC, Holcombe A, Brown S, Ransley E, Hann M, Greaves D (2023) Evolution of floating offshore wind platforms:A review of at-sea devices. Renewable & Sustainable Energy Reviews 183:113416. DOI:10.1016/j.rser.2023.113416
Faltinsen O (1990) Sea loads on ships and offshore structure. Cambridge University Press, New York, 34-106
Gaudiosi G (1994) Offshore wind energy in the Mediterranean and other European Seas. Renewable Energy 5(1):675-691. DOI:10.1016/0960-1481(94)90453-7
Gaudiosi G (1996) Offshore wind energy in the world context. Renewable Energy 9(1):899-904. DOI:10.1016/0960-1481(96) 88425-4
GWEC (2023) Global offshorewind report 2023. Global Wind Energy Council, Brussels, Belgium. Available from http://www.gwec.net/global-figures/global-offshore/[Accessed on March. 23, 2024]
Hall M (2015) MoorDyn user’s guide. Department of Mechanical Engineering, University of Maine, Orono, USA, 15
Jiang Z, Wen B, Chen G, Xiao L, Li J, Peng ZK, Tian X (2021) Feasibility studies of a novel spar-type floating wind turbine for moderate water depths:Hydrodynamic perspective with model test. Ocean Engineering 233:109070. DOI:10.1016/j.oceaneng. 2021.109070
Jonkman J (2007) Dynamics modeling and loads analysis of an offshore floating wind turbine. PhD thesis, University of Colorado Boulder, Boulder, USA, 27-64
Jonkman J (2020) OpenFAST documentation-Release 2.4.0. National Renewable Energy Laboratory, USA, 1-435
Jonkman J, Buhl M (2007) Development and verification of a fully coupled simulator for offshore wind turbines. 45th AIAA Aerospace Sciences Meeting, 212
Liu Y, Li S, Yi Q, Chen D (2016) Developments in semi-submersible floating foundations supporting wind turbines:A comprehensive review. Renewable & Sustainable Energy Reviews 60:433-449. DOI:10.1016/j.rser.2016.01.109
Loughney S, Wang J, Bashir M, Armin M, Yang Y (2021) Development and application of a multiple-attribute decision-analysis methodology for site selection of floating offshore wind farms on the UK Continental Shelf. Sustainable Energy Technologies and Assessments 47:101440. DOI:10.1016/j.seta.2021.101440
Mackay E, Shi W, Qiao D, Gabl R, Davey T, Ning D, Johanning L (2021) Numerical and experimental modelling of wave interaction with fixed and floating porous cylinders. Ocean Engineering 242:110118. DOI:10.1016/j.oceaneng.2021.110118
Moriarty PJ, Hansen AC (2005) AeroDyn theory manual. National Renewable Energy Lab., Golden, CO, USA, No. NREL/TP-500-36881
Nielsen FG, Hansen TD, Skaare B (2006) Integrated dynamic analysis of floating offshore wind turbines. Proceedings of the ASME 2006 25th International Conference on Ocean, Offshore and Artic Engineering, 671-679. DOI:10.1115/OMAE2006-92291
Ning A, Hayman G, Damiani R (2015) Development and validation of a new blade element momentum skewed-wake model within AeroDyn. 33rd Wind Energy Symposium, AIAA 2015-0215. DOI:10.2514/6.2015-0215
Soeb M, Islam A, Jumaat M, Huda N, Arzu F (2017) Response of nonlinear offshore spar platform under wave and current. Ocean Engineering 144:296-304. DOI:10.1016/j.oceaneng. 2017.07.042
Uzunoglu E, Guedes Soares C (2020) Hydrodynamic design of a freefloat capable tension leg platform for a 10 MW wind turbine. Ocean Engineering 197:106888. DOI:10.1016/j.oceaneng.2019. 106888
Vaezi M, Pourzangbar A, Fadavi M, Mousavi SM, Sabbahfar P, Brocchini M (2021) Effects of stiffness and configuration of braceviscous damper systems on the response mitigation of offshore jacket platforms. Applied Ocean Research 107:102482. DOI:10.1016/j.apor.2020.102482
Wang J, Qin S, Jin S, Wu J (2015) Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources. Renewable & Sustainable Energy Reviews 42:26-42. DOI:10.1016/j.rser.2014.09.042
Yang Y, Bashir M, Michailides C, Li C, Wang J (2020) Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines. Renewable Energy 161:606-625. DOI:10.1016/j.renene.2020.07.134
Yao Y, Ning D, Deng S, Mayon R, Qin M (2023) Hydrodynamic investigation on floating offshore wind turbine platform integrated with porous shell. Energies 16(11):4376. DOI:10.3390/en16114376
Yu M, Hu Z, Xiao L (2015) Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine. Journal of Hydrodynamics 26(6):865-874. DOI:10.1016/S1001-6058(14)60095-0
Zhang L, Michailides C, Wang Y, Shi W (2020a) Moderate water depth effects on the response of a floating wind turbine. Structures 28:1435-1448. DOI:10.1016/j.istruc.2020.09.067
Zhang L, Shi W, Karimirad M, Michailides C, Jiang Z (2020b) Secondorder hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines. Ocean Engineering 207(C):107371. DOI:10.1016/j.oceaneng.2020.107371
Zhao Z, Shi W, Wang W, Qi S, Li X (2021) Dynamic analysis of a novel semi-submersible platform for a 10 MW wind turbine in intermediate water depth. Ocean Engineering 237:109688. DOI:10.1016/j.oceaneng.2021.109688
Zhao Y, Yang J, Gu M (2016) Coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine under combined wind and wave loading. Jouranl of Shanghai Jiaotong University (Science) 21(1):103-111. DOI:10.1007/s12204-015-1689-5
Zhou Y, Xiao Q, Peyrard C, Pan G (2021) Assessing focused wave applicability on a coupled aero-hydro-mooring FOWT system using CFD approach. Ocean Engineering 240:109987. DOI:10.1016/j.oceaneng.2021.109987
Zou Q, Lu Z, Shen Y (2023) Short-term prediction of hydrodynamic response of a novel semi-submersible FOWT platform under wind, current and wave loads. Ocean Engineering 278:114471. DOI:10.1016/j.oceaneng.2023.114471