|Table of Contents|

Citation:
 Yisheng Yao,Robert Mayon,Yu Zhou,et al.Integrated System of Semi-submersible Offshore Wind Turbine Foundation and Porous Shells[J].Journal of Marine Science and Application,2024,(2):491-505.[doi:10.1007/s11804-024-00406-5]
Click and Copy

Integrated System of Semi-submersible Offshore Wind Turbine Foundation and Porous Shells

Info

Title:
Integrated System of Semi-submersible Offshore Wind Turbine Foundation and Porous Shells
Author(s):
Yisheng Yao12 Robert Mayon12 Yu Zhou12 Yi Zhu3 Dezhi Ning12
Affilations:
Author(s):
Yisheng Yao12 Robert Mayon12 Yu Zhou12 Yi Zhu3 Dezhi Ning12
1 State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China;
2 Dalian Key Laboratory of Offshore Renewable Energy, Dalian University of Technology, Dalian 116024, China;
3 Powerchina Zhongnan Engineering Corporation Limited, Changsha 410000, China
Keywords:
Semi-submersible platform|Porous shells|OC4-DeepCwind|Motion response|Hydrodynamic parameters|Porous shells’ geometric parameters
分类号:
-
DOI:
10.1007/s11804-024-00406-5
Abstract:
A novel semi-submersible platform is proposed for 5 MW wind turbines. This concept focuses on an integrated system formed by combining porous shells with a semi-submersible platform. A coupled aerodynamic-hydrodynamic-mooring analysis of the new system is performed. The motion responses of the novel platform system and the traditional platform are compared. The differences in hydrodynamic performance between the two platforms are also evaluated. The influence of the geometric parameters (porosity, diameter, and wall thickness) of porous shells on the motion response behavior of the new system is studied. Overall, the new semi-submersible platform exhibits superior stability in terms of pitch and heave degrees of freedom, demonstrating minimal effects on the motion response in the surge degree of freedom.

References:

ANSYS AQWA (2016) AQWA user’s manual release 17.0. ANSYS Inc., Canonsburg, USA, 3-64
Benitz MA, Schmidt DP, Lackner MA, Ste M (2014) Comparison of hydrodynamic load predictions between reduced order engineering models and computational fluid dynamics for the OC4-DeepCwind semi-submersible. Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, Volume 9B:Ocean Renewable Energy, San Francisco, USA, P1. DOI:10.1115/OMAE2014-23985
Cutler J, Bashir M, Yang Y, Wang J, Loughney S (2022) Preliminary development of a novel catamaran floating offshore wind turbine platform and assessment of dynamic behaviours for intermediate water depth application. Ocean Engineering 258:111769. DOI:10.1016/j.oceaneng.2022.111769
Coulling AJ, Goupee AJ, Robertson AN, Jonkman JM, Dagher HJ (2013) Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data. Journal of Renewable & Sustainable Energy 5(2):557-569. DOI:10.1063/1.4796197
Ding Q, Li C, Yuan W, Hao W (2019) Effects of heave plate on dynamic response of floating wind turbine spar platform under the coupling effects of wind and wave. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering 39(4):1113-1126. DOI:10.13334/j.0258-8013
Edwards EC, Holcombe A, Brown S, Ransley E, Hann M, Greaves D (2023) Evolution of floating offshore wind platforms:A review of at-sea devices. Renewable & Sustainable Energy Reviews 183:113416. DOI:10.1016/j.rser.2023.113416
Faltinsen O (1990) Sea loads on ships and offshore structure. Cambridge University Press, New York, 34-106
Gaudiosi G (1994) Offshore wind energy in the Mediterranean and other European Seas. Renewable Energy 5(1):675-691. DOI:10.1016/0960-1481(94)90453-7
Gaudiosi G (1996) Offshore wind energy in the world context. Renewable Energy 9(1):899-904. DOI:10.1016/0960-1481(96) 88425-4
GWEC (2023) Global offshorewind report 2023. Global Wind Energy Council, Brussels, Belgium. Available from http://www.gwec.net/global-figures/global-offshore/[Accessed on March. 23, 2024]
Hall M (2015) MoorDyn user’s guide. Department of Mechanical Engineering, University of Maine, Orono, USA, 15
Jiang Z, Wen B, Chen G, Xiao L, Li J, Peng ZK, Tian X (2021) Feasibility studies of a novel spar-type floating wind turbine for moderate water depths:Hydrodynamic perspective with model test. Ocean Engineering 233:109070. DOI:10.1016/j.oceaneng. 2021.109070
Jonkman J (2007) Dynamics modeling and loads analysis of an offshore floating wind turbine. PhD thesis, University of Colorado Boulder, Boulder, USA, 27-64
Jonkman J (2020) OpenFAST documentation-Release 2.4.0. National Renewable Energy Laboratory, USA, 1-435
Jonkman J, Buhl M (2007) Development and verification of a fully coupled simulator for offshore wind turbines. 45th AIAA Aerospace Sciences Meeting, 212
Liu Y, Li S, Yi Q, Chen D (2016) Developments in semi-submersible floating foundations supporting wind turbines:A comprehensive review. Renewable & Sustainable Energy Reviews 60:433-449. DOI:10.1016/j.rser.2016.01.109
Loughney S, Wang J, Bashir M, Armin M, Yang Y (2021) Development and application of a multiple-attribute decision-analysis methodology for site selection of floating offshore wind farms on the UK Continental Shelf. Sustainable Energy Technologies and Assessments 47:101440. DOI:10.1016/j.seta.2021.101440
Mackay E, Shi W, Qiao D, Gabl R, Davey T, Ning D, Johanning L (2021) Numerical and experimental modelling of wave interaction with fixed and floating porous cylinders. Ocean Engineering 242:110118. DOI:10.1016/j.oceaneng.2021.110118
Moriarty PJ, Hansen AC (2005) AeroDyn theory manual. National Renewable Energy Lab., Golden, CO, USA, No. NREL/TP-500-36881
Nielsen FG, Hansen TD, Skaare B (2006) Integrated dynamic analysis of floating offshore wind turbines. Proceedings of the ASME 2006 25th International Conference on Ocean, Offshore and Artic Engineering, 671-679. DOI:10.1115/OMAE2006-92291
Ning A, Hayman G, Damiani R (2015) Development and validation of a new blade element momentum skewed-wake model within AeroDyn. 33rd Wind Energy Symposium, AIAA 2015-0215. DOI:10.2514/6.2015-0215
Soeb M, Islam A, Jumaat M, Huda N, Arzu F (2017) Response of nonlinear offshore spar platform under wave and current. Ocean Engineering 144:296-304. DOI:10.1016/j.oceaneng. 2017.07.042
Uzunoglu E, Guedes Soares C (2020) Hydrodynamic design of a freefloat capable tension leg platform for a 10 MW wind turbine. Ocean Engineering 197:106888. DOI:10.1016/j.oceaneng.2019. 106888
Vaezi M, Pourzangbar A, Fadavi M, Mousavi SM, Sabbahfar P, Brocchini M (2021) Effects of stiffness and configuration of braceviscous damper systems on the response mitigation of offshore jacket platforms. Applied Ocean Research 107:102482. DOI:10.1016/j.apor.2020.102482
Wang J, Qin S, Jin S, Wu J (2015) Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources. Renewable & Sustainable Energy Reviews 42:26-42. DOI:10.1016/j.rser.2014.09.042
Yang Y, Bashir M, Michailides C, Li C, Wang J (2020) Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines. Renewable Energy 161:606-625. DOI:10.1016/j.renene.2020.07.134
Yao Y, Ning D, Deng S, Mayon R, Qin M (2023) Hydrodynamic investigation on floating offshore wind turbine platform integrated with porous shell. Energies 16(11):4376. DOI:10.3390/en16114376
Yu M, Hu Z, Xiao L (2015) Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine. Journal of Hydrodynamics 26(6):865-874. DOI:10.1016/S1001-6058(14)60095-0
Zhang L, Michailides C, Wang Y, Shi W (2020a) Moderate water depth effects on the response of a floating wind turbine. Structures 28:1435-1448. DOI:10.1016/j.istruc.2020.09.067
Zhang L, Shi W, Karimirad M, Michailides C, Jiang Z (2020b) Secondorder hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines. Ocean Engineering 207(C):107371. DOI:10.1016/j.oceaneng.2020.107371
Zhao Z, Shi W, Wang W, Qi S, Li X (2021) Dynamic analysis of a novel semi-submersible platform for a 10 MW wind turbine in intermediate water depth. Ocean Engineering 237:109688. DOI:10.1016/j.oceaneng.2021.109688
Zhao Y, Yang J, Gu M (2016) Coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine under combined wind and wave loading. Jouranl of Shanghai Jiaotong University (Science) 21(1):103-111. DOI:10.1007/s12204-015-1689-5
Zhou Y, Xiao Q, Peyrard C, Pan G (2021) Assessing focused wave applicability on a coupled aero-hydro-mooring FOWT system using CFD approach. Ocean Engineering 240:109987. DOI:10.1016/j.oceaneng.2021.109987
Zou Q, Lu Z, Shen Y (2023) Short-term prediction of hydrodynamic response of a novel semi-submersible FOWT platform under wind, current and wave loads. Ocean Engineering 278:114471. DOI:10.1016/j.oceaneng.2023.114471

Memo

Memo:
Received date: 2024-01-17;Accepted date: 2024-02-17。
Foundation item: Supported by the National Natural Science Foundation of China under Grant Nos.U22A20242 and 52301313.
Corresponding author: Dezhi Ning,E-mail:dzning@dlut.edu.cn
Last Update: 2024-05-28