Bjarnholt G (1980) Suggestions on standards for measurement and data evaluation in the underwater explosion test. Propellants, Explosives, Pyrotechnics, 5(2-3):67-74. https://doi.org/10.1002/prep.19800050213
Cole RH, Weller R (1948) Underwater explosions. Physics Today, 1(6):35. https://doi.org/10.5962/bhl.title.48411
Cui P, Zhang A, Wang S, Khoo BC (2018) Ice breaking by a collapsing bubble. Journal of Fluid Mechanics, 841, 287-309. https://doi.org/10.1017/jfm.2018.63
Daramizadeh A, Ansari MR (2015) Numerical simulation of underwater explosion near air-water free surface using a five-equation reduced model. Ocean Engineering. 110, 25-35. https://doi.org/10.1016/j.oceaneng.2015.10.003
Emamzadeh SS (2022) Nonlinear dynamic response of a fixed offshore platform subjected to underwater explosion at different distances. J. Marine. Sci. Appl. 21(4):168-176. https://doi.org/10.1007/s11804-022-00306-6
Geers TL, Hunter KS (2002) An integrated wave-effects model for an underwater explosion bubble. J. Acoust. Soc. Am. 4(111):1584-1601. https://doi.org/10.1121/1.1458590
Han R, Zhang A, Tan S, Li S (2022) Interaction of cavitation bubbles with the interface of two immiscible fluids on multiple time scales. Journal of Fluid Mechanics, 932, A8. https://doi.org/10.1017/jfm. 2021.976
Huang C, Guo K, Qin K, Luo K, Li D, Dang J (2022) Hydrodynamic characteristics and supercavity shape of supercavitating projectiles launched with supersonic speed. J. Marine. Sci. Appl. 21(2):24-33. https://doi.org/10.1007/s11804-022-00262-1
Hung CF, Hwangfu JJ (2010) Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries.
Journal of Fluid Mechanics, 651, 55-80. https://doi.org/10.1017/S0022112009993776
Klaseboer E, Hung KC, Wang C (2005) Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. Journal of Fluid Mechanics. 537:387-413. https://doi.org/10.1017/S0022112005005306
Li S, Zhang A, Cui P, Li S, Liu Y (2023) Vertically neutral collapse of a pulsating bubble at the corner of a free surface and a rigid wall. Journal of Fluid Mechanics, 962:A28. https://doi.org/10.1017/jfm.2023.292
Liang HZ, Li Y, Zhang QM (2016) The explosive characteristics of TNT under deep water. Acta Armamentar II. 37(S2):241-245
Liu W, Zhang A, Miao X, Ming F, Liu Y (2023) Investigation of hydrodynamics of water impact and tail slamming of highspeed water entry with a novel immersed boundary method. Journal of Fluid Mechanics, 958:A42. https://doi.org/10.1017/jfm.2023.120
Ma K, Wang CL, Li MR (2019) Underwater explosion load characteristic of shaped charge warhead (in Chinese). Ordnance Material Science and Engineering, 42(1):1-5. https://doi.org/10.14024/j.cnki.1004-244x.20181122.002
Shi CY, Xu CD, Kong DR (2020) Effects of shell thickness of charge on pressure waveform in water shock tube (in Chinese). Chinese Journal of Explosives & Propellants, 43(3):314-319. https://doi.org/10.14077/j.issn.1007-7812.201904029
Tatl?suluo?lu A, Beji S (2021) Blast pressure measurements of an underwater detonation in the sea. J. Marine. Sci. Appl. 20(4):706-713. https://doi.org/10.1007/s11804-021-00230-1
USA CD (2003) Interactive Non-Linear Dynamic Analysis Software Autodyn User Manual. USA Century Dynamics Inc., Houston.
Wang CL, Zhou G, Ma K (2017) Shockwave characteristics of shaped charge exploded underwater (in Chinese). Chinese Journal of High Pressure Physics, 31(4):453-461. https://doi.org/10.11858/gywlxb.2017.04.014
Wang CL, Zhou G, Ma K (2018) Damage analysis of typical water partitioned structure under shaped charge underwater explosion(in Chinese). Journal of Ship Mechanics, 22(8):1001-1010. https://doi.org/10.3969/j.issn.1007-7294.2018.08.010
Wang P, Zhang A, Ming F, Sun P, Cheng H (2019) A novel nonreflecting boundary condition for fluid dynamics solved by smoothed particle hydrodynamics. Journal of Fluid Mechanics, 860:81-114. https://doi.org/10.1017/jfm.2018.852
Wang Y, Qin YZ, Wang ZK, Yao XL (2022) Damage characteristics of ice layer during underwater blasting of different types of explosives(in Chinese). Journal of Vibration and Shock. https://doi.org/10.13465/j.cnki.jvs.2022.09.025
Zamyshlyaev BV (1973) Dynamic Loads in Underwater Explosion. USA Naval Intelligence Support Center, Washington DC Zhang A, Li S, Cui P, Li S, Liu Y (2023a) Theoretical study on bubble dynamics under hybrid-boundary and multi-bubble conditions using the unified equation. Sci. China Phys. Mech. Astron. 66, 124711. https://doi.org/10.1007/s11433-023-2204-x Zhang A, Li S, Cui P, Li S, Liu Y (2023b) A unified theory for bubble dynamics. Physics of Fluids, 35(3):033323. https://doi.org/10.1063/5.0145415
Zhang A, Ren S, Li Q, Li J (2012) 3D numerical simulation on fluidstructure interaction of structure subjected to underwater explosion with cavitation. Applied Mathematics and Mechanics-English Edition. 33(9):1191-1206. https://doi.org/10.1007/s10483-012-1615-8
Zhang AM, Cui P, Cui J, Wang QX (2015) Experimental study on bubble dynamics subject to buoyancy. Journal of Fluid Mechanics, 776:137-160. https://doi.org/10.1017/jfm.2015.323
Zhang Z, Wang C, Zhang A, Silberschmidt VV, Wang L (2019) SPHBEM simulation of underwater explosion and bubble dynamics near rigid wall. Science China-Technological Sciences, 62(7):1082-1093. https://doi.org/10.1007/s11431-018-9420-2
Zhang ZF, Li HL, Wang LK, Zhang GY, Zong Z (2022) Formation of shaped charge projectile in air and water. Materials, 15(21):7848. https://doi.org/10.3390/ma15217848
Zhang ZF, Li HL, Zhang GY (2023c) Action time sequence of underwater explosion shock wave and shaped charge projectile(in Chinese). Explosion and Shock Waves. 43(10):3-14. https://doi.org/10.11883/bzycj-2022-0397
Zhou FY, Jiang T, Wang WL, Zhang KY, Zhan FM (2012) Study on damage capabilities of multiple hulls structure under underwater explosion. Amr. 430-432, 1581-1586. https://doi.org/10.4028/www.scientific.net/AMR.430-432.1581
Zong Z, Zhao Y, Ye F, Li H, Chen G (2012) Parallel computing of the underwater explosion cavitation effects on full-scale ship structures. J. Marine. Sci. Appl. 11(4):469-477. https://doi.org/10.1007/s11804-012-1157-7