Arakeri VH, Acosta AJ (1981) Viscous effects in the inception of cavitation.J.Fluids Eng.103(2):280-287.https://doi.org/10.1115/1.3241733
Baltazar J, Rijpkema D, Campos J (2018) On the use of the γ-Reθ transition model for the prediction of the propeller performance at model scale.Ocean Engineering, 170:6-19.https://10.1016/j.oceaneng.2018.10.005
Baltazar J, Melo D, Rijpkema D (2020) Analysis of the blade boundarylayer flow of a marine propeller using a RANS solver.Ocean Engineering, 211, 107633.https://doi.org/10.1016/j.oceaneng.2020.107633
Bhattacharyya A, Krasilnikov V, Steen S (2016) A CFD-based scaling approach for ducted propellers.Ocean Engineering 123:116-130.https://doi.org/10.1016/j.oceaneng.2016.06.011
Barkmann U, Heinke HJ, Lübke L (2011) Potsdam propeller test case(PPTC).In:Proceeding of the Second International Symposium on Marine Propulsors, Hamburg, Germany
Franc JP, Michel JM (1985) Attached cavitation and the boundary layer:experimental investigation and numerical treatment.Journal of Fluid Mechanics, 154:63-90.https://doi.org/10.1017/S0022112085001422
Gaggero S (2022a) Influence of Laminar-to-Turbulent transition on model scale propeller performances.Part I:fully wetted conditions.Ship and Offshore Structures, 17(4):715-727.https://doi.org/10.1080/17445302.2020.1863658
Gaggero S (2022b) Influence of laminar-to-turbulent transition on model scale propeller performances.Part II:cavitating conditions.Ships and Offshore Structures, 17(4):772-791.https://doi.org/10.1080/17445302.2020.1866819
Gaggero S, Villa D (2017) Steady cavitating propeller performance by using OpenFOAM, StarCCM+ and a boundary element method.Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 231(2):411-440.https://doi.org/10.1177/14750902166442
Gaggero S, Villa D (2018a) Cavitating propeller performance in inclined shaft conditions with OpenFOAM:PPTC 2015 test case.Journal of Marine Science and Application, 17(1):1-20.https://doi.org/10.1007/s11804-018-0008-6
Gaggero S, Villa D (2018b) Improving model scale propeller performance prediction using the k-kL-ω transition model in OpenFOAM.International Shipbuilding Progress 67:187-226.https://doi.org/10.3233/ISP-180146
Ge M, Svennberg U, Bensow RE (2019) Numerical Investigation of pressure pulse prediction for propellers mounted on an inclined shaft.In:Sixth International Symposium on Marine Propulsors, Rome, Italy.
Ge M, Svennberg U, Bensow RE (2020) Investigation on RANS prediction of propeller induced pressure pulses and sheet-tip cavitation interactions in behind hull condition.Ocean Engineering, 209, 107503.https://doi.org/10.1016/j.oceaneng.2020.107503
Ge M, Svennberg U, Bensow RE (2021a) Improved Prediction of Sheet Cavitation Inception Using Bridged Transition Sensitive Turbulence Model and Cavitation Model.Journal of Marine Science and Engineering, 9(12):1343.https://doi.org/10.3390/jmse9121343
Ge M, Svennberg U, Bensow RE (2021b) Numerical prediction of propeller induced hull pressure pulses using RANS and IDDES.In:Proceedings of the IX International Conference on Computational Methods in Marine Engineering, MARINE 2021.
Heinke H, Lubke L (2011) The SMP 2011 workshop on cavitation and propeller performance-case 2, propeller open water perfor-mance and cavitation behaviour.In:Proceeding of the Second International Symposium on Marine Propulsors, Hamburg, Germany.
ITTC (2017) Scaling of conventional and unconventional propeller, open water data.In:Report of the Propulsion Committee of the 28th ITTC.
Kinnas SA, Abdel-Maksoud M, Barkmann U, Lubke L, Tian Y (2015) The second workshop on cavitation and propeller performance.In:Proceedings of the Fourth International Symposium on Marine Propulsors, SMP
Korkut E, Atlar M (2000) On the importance of effect of turbulence in cavitation inception tests of marine propellers.Proceedings of Royal Society of London A:Mathematical, Physical and Engineering Sciences, 458:29-48.https://doi.org/10.1098/rspa.2001.0852
Kuiper G (1978a) Scale effects on propeller cavitation.In:Twelfth Symposium on Naval Hydrodynamics, Washington D.C.
Kuiper G (1978b) Cavitation Scale Effects-A case study.International Shipbuilding Progress, 25:81-90
Kuiper (1981) Cavitation Inception on Ship Propeller Models.PhD Thesis.Technical University of Delft
Langtry RB, Menter FR (2005) Transition modeling for general CFD applications in aeronautics.In:43rd AIAA Aerospace Sciences Meeting and Exhibit.https://doi.org/10.2514/6.2005-522
Langtry RB, Menter FR, Likki D, Suzen Y, Huang P, Völker S (2006) A correlation-based transition model using local variables-Part II:Test cases and industrial applications.Journal of Turbomachinery 128(3):423-434.https://doi.org/10.1115/1.2184353
Langtry RB, Menter FR (2009) Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes.AIAA Journal 47(12):2894-2906.https://doi.org/10.2514/1.42362
Lungu A (2020) A DES-SST based assessment of hydrodynamic performances of the wetted and cavitating PPTC propeller.Journal of Marine Science and Engineering, 8(4):297.https://doi.org/10.3390/jmse8040297
Menter FR, Langtry RB, Likki S, Suzen Y, Huang P, Völker S (2006) A correlation-based transition model using local variables-part I:model formulation.J Turbomach.128(3):413-422.http://dx.doi.org/10.1115/1.2184352
Morgut M, Nobile E (2012) Numerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration.International Journal of Rotating Machinery.https://doi.org/10.1155/2012/618180
Morgut M, Jo?t D, ?kerlavaj A, Nobile E, Contento G, Pigazzini R, Puzzer T, Martini S (2019) Numerical simulations of a cavitating propeller in uniform and oblique flow.International Shipbuilding Progress, 66(1):77-90.https://doi.org/10.3233/ISP-180257
Salvatore F, Streckwall H, Van Terwisga T (2009) Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome workshop.
In:Proceedings of the First International Symposium on Marine Propulsors, Trondheim, Norway Schnerr G, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics.In:Proceedings of the 4th international conference on multiphase flow, New Orleans, Louisiana
Siemens PLM (2017) StarCCM+ ver.12.06.011 Users Guide
SVA (2020) Potsdam Propeller Test Case PPTC, Update on Cavitation VP1304 vs.P1790 (https://www.sva-potsdam.de/wp-content/uploads/2020/11/PPTC-update_on_cavitation-VP1304vsP1790-1-1.pdf)
Tani G, Viviani M, Felli M, Lafeber FH, Lloyd T, Aktas B, Atlar M, Seol H, Hallander J, Sakamoto N, Kamiirisa H (2019a) Round Robin test in radiated noise of a cavitating propeller.In:Sixth International Symposium on Marine Propulsors, Rome, Italy
Tani G, Viviani M, Felli M, Lafeber FH, Lloyd T, Aktas B, Atlar M, Seol H, Hallander J, Sakamoto N (2019b) Noise measurements of a cavitating propeller in different facilities:results of the round-Robin test programme.In:The Sixth International Conference on Advanced Model Measurement Technology for the Maritimi Industry, Rome, Italy
Vaz G, Hally D, Huuva T, Bulten N, Muller P, Becchi P, Herrer J, Whitworth S, Mae R, Korsstrom A (2015) Cavitating flow calculations for E779A propeller in open-water and in-behind conditions:Code comparison and solution validation.In:Proceedings of the Fourth International Symposium on Marine Propulsors, Austin, Texas
Viitanen V, Siikonen T, Sánchez-Caja A (2020) Cavitation on modeland full-scale marine propellers:steady and transient viscous flow simulations at different Reynolds numbers.Journal of Marine Science and Engineering, 8(2):141.https://doi.org/10.3390/jmse8020141
Walters DK, Leylek JH (2002) A new model for boundary-layer transition using a single-point RANS approach.In:ASME 2002 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 67-79
Yilmaz N, Khorasanchi M, Atlar M (2017) An Investigation into computational modelling of cavitation in a propeller’s slipstream.In:Proceedings of the Fifth International Symposium on Marine Propulsors, Espoo, Finland