Abkowitz MA (1980) Measurement of hydrodynamic characteristics from ship maneuvering trials by system identification.SNAME Trans.88, 283-318
Abrougui H, Nejim S, Hachicha S, Zaoui C, Dallagi H (2021) Modeling, parameter identification, guidance and control of an unmanned surface vehicle with experimental results.Ocean Eng.241, 110038.https://doi.org/10.1016/J.OCEANENG.2021.110038
Allianz Global Corporate and Speciality (2018) Safety and Shipping Review 2018.Munich, Germany
Bejarano G, N-Yo S (2020) Velocity estimation and robust nonlinear path following control of autonomous surface vehicles.IFAC-PapersOnLine 53, 14674-14679.https://doi.org/10.1016/J.IFACOL.2020.12.1479
Børhaug E, Pavlov A, Panteley E, Pettersen KY (2011) Straight line path following for formations of underactuated marine surface vessels.IEEE Trans.Control Syst.Technol.19, 493-506.https://doi.org/10.1109/TCST.2010.2050889
Børhaug E, Pavlov A, Pettersen KY (2008) Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents.In:47th IEEE Conference on Decision and Control, 4984-4991.https://doi.org/10.1109/CDC.2008.4739352
Breivik M, Fossen T (2009) Guidance laws for autonomous underwater vehicles.In:inzartsev AV Ed.Underwater Vehicles.IntechOpen, London.https://doi.org/10.5772/6696
Breu DA, Fossen TI (2011) L1 adaptive and extremum seeking control applied to roll parametric resonance in ships.IEEE Int.Conf.Control Autom.ICCA, 871876.https://doi.org/10.1109/ICCA.2011.6138047
Caharija W, Candeloro M, Pettersen KY, Sørensen AJ (2012)Relative velocity control and integral LOS for path following of underactuated surface vessels.IFAC Proc.Vol.45, 380-385.https://doi.org/10.3182/20120919-3-IT-2046.00065
Caharija W, Pettersen KY, Bibuli M, Calado P, Zereik E, Braga J, Gravdahl JT, Sorensen AJ, Milovanovic M, Bruzzone G (2016)Integral line-of-sight guidance and control of underactuated marine vehicles:theory, simulations, and experiments.IEEE Trans.Control Syst.Technol.24, 1623-1642.https://doi.org/10.1109/TCST.2015.2504838
Caharija W, Pettersen KY, Calado P, Braga J (2015) A comparison between the ILOS guidance and the vector field guidance.In:IFAC-PapersOnLine.Elsevier, 89-94.https://doi.org/10.1016/j.ifacol.2015.10.263
Caharija W, Pettersen KY, Sørensen AJ, Candeloro M, Gravdahl JT (2014) Relative velocity control and integral line of sight for path following of autonomous surface vessels:merging intuition with theory.Proc.Inst.Mech.Eng.Part M J.Eng.Marit.Environ.228, 180-191.https://doi.org/10.1177/1475090213512293
Chen X, Liu Z, Zhang J, Zhou D, Dong J (2018) Adaptive slidingmode path following control system of the underactuated USV under the influence of ocean currents.J.Syst.Eng.Electron.29, 1271-1283.https://doi.org/10.21629/JSEE.2018.06.14
Cho N, Kim Y, Park S (2015) Three-dimensional nonlinear differential geometric path-following guidance law.https://doi.org/10.2514/1.G001060
Do KD, Jiang ZP, Pan J (2002) Underactuated ship global tracking under relaxed conditions.IEEE Trans.Automat.Contr.47, 1529-1536.https://doi.org/10.1109/TAC.2002.802755
Do KD, Jiang ZP, Pan J (2004) Robust adaptive path following of underactuated ships.Automatica 40, 929-944.https://doi.org/10.1016/j.automatica.2004.01.021
Faltinsen OM (1993) Sea Loads on Ships and Offshore Structures, Cambridge University Press.Cambridge, UK.
Fossen TI (2011) Handbook of Marine Craft Hydrodynamics and Motion Control.John Wiley & Sons, Ltd, Chichester, UK.https://doi.org/10.1002/9781119994138
Fossen TI (2022) Line-of-sight path-following control utilizing an extended Kalman filter for estimation of speed and course over ground from GNSS positions.J.Mar.Sci.Technol.1-8.https://doi.org/10.1007/S00773-022-00872-Y/FIGURES/8
Fossen TI, Breivik M, Skjetne R (2003) Line-of-sight path following of underactuated marine craft.IFAC Proc.Vol.36, 211-216.https://doi.org/10.1016/S1474-6670(17)37809-6
Fossen TI, Lekkas AM (2015) Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents.Int.J.Adapt.Control Signal Process.31, 445-463.https://doi.org/10.1002/acs.2550
Fossen TI, Pettersen KY (2014) On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws.Automatica 50, 2912-2917.https://doi.org/10.1016/J.AUTOMATICA.2014.10.018
Fossen TI, Pettersen KY, Galeazzi R (2015) Line-of-sight path following for dubins paths with adaptive sideslip compensation of drift forces.IEEE Trans.Control Syst.Technol.23, 820-827.https://doi.org/10.1109/TCST.2014.2338354
Fredriksen E, Pettersen KY (2006) Global κ -exponential way-point maneuvering of ships:theory and experiments.Automatica 42, 677-687.ttps://doi.org/10.1016/J.AUTOMATICA.2005.12.020
Freund E (1973) Decoupling and pole assignment in nonlinear systems.Electron.Lett.9, 373-374.https://doi.org/10.1049/EL:19730275
Gu N, Wang D, Peng Z, Wang J, Han QL (2022a) Advances in Lineof-Sight Guidance for Path Following of Autonomous Marine Vehicles:an Overview.IEEE Trans.Syst.Man, Cybern.Syst.https://doi.org/10.1109/TSMC.2022.3162862
Gu N, Wang D, Peng Z, Wang J, Han QL (2022b) Disturbance observers and extended state observers for marine vehicles:a survey.Control Eng.Pract.123, 105158.https://doi.org/10.1016/J.CONENGPRAC.2022.105158
Hassani V, Pascoal AM, Onstein TF (2018) Data-driven control in marine systems.Annu.Rev.Control 46, 343-349.https://doi.org/10.1016/J.ARCONTROL.2018.10.006
Hinostroza MA, Xu H, Guedes Soares C (2021) Experimental results of the cooperative operation of autonomous surface vehicles navigating in complex marine environment.Ocean Eng.219, 108256.https://doi.org/10.1016/j.oceaneng.2020.108256
Hinostroza MA, Xu H, Guedes Soares C (2019) Cooperative operation of autonomous surface vehicles for maintaining formation in complex marine environment.Ocean Eng.183, 132-154.https://doi.org/10.1016/j.oceaneng.2019.04.098
Huang C, Zhang X, Zhang G (2021a) Decentralized event-triggered cooperative path-following control for multiple autonomous surface vessels under actuator failures.Appl.Ocean Res.113, 102751.https://doi.org/10.1016/J.APOR.2021.102751
Huang C, Zhang X, Zhang G (2021b) Adaptive neural finite-time formation control for multiple underactuated vessels with actuator faults.Ocean Eng.222, 108556.https://doi.org/10.1016/J.OCEANENG.2020.108556
Huang C, Zhang X, Zhang G, Deng Y (2021c) Robust practical fixedtime leader-follower formation control for underactuated autonomous surface vessels using event-triggered mechanism.Ocean Eng.233, 109026.https://doi.org/10.1016/J.OCEANENG.2021.109026
Huang H, Li Y, Zhuang Y, Gong M, Sharma S, Xu D (2018) Lineof-sight path following of an underactuated USV exposed to ocean currents using cascaded theorem.2018 WRC Symp.Adv.Robot.Autom.WRC SARA 2018-Proceeding 334-339.https://doi.org/10.1109/WRC-SARA.2018.8584241
IMO, Autonomous ships:regulatory scoping exercise completed[WWW Document].URL https://www.imo.org/en/MediaCentre/PressBriefings/pages/MASSRSE2021.aspx (accessed 5.9.22).
Jiang Y, Peng Z, Meng C, Liu L, Wang D, Li T (2022) Data-driven finite control set model predictive speed control of an autonomous surface vehicle subject to fully unknown kinetics and propulsion dynamics.Ocean Eng.264, 112474.https://doi.org/10.1016/J.OCEANENG.2022.112474
Jiang Y, Peng Z, Wang D, Chen CLP (2020) Line-of-sight target enclosing of an underactuated autonomous surface vehicle with experiment results.IEEE Trans.Ind.Informatics 16, 832-841.https://doi.org/10.1109/TII.2019.2923664
Khalil HK (2002) Nonlinear Systems.Prentice Hall
Kokotovi? PV (1992) The Joy of Feedback:Nonlinear and Adaptive.IEEE Control Syst.12, 7-17.https://doi.org/10.1109/37.165507
Lekkas AM, Fossen TI (2014) Integral LOS path following for curved paths based on a monotone cubic hermite spline parametrization.IEEE Trans.Control Syst.Technol.22, 2287-2301.https://doi.org/10.1109/TCST.2014.2306774
Lekkas AM, Fossen TI (2012) A time-varying lookahead distance guidance law for path following.IFAC Proc.Vol.45, 398-403.https://doi.org/10.3182/20120919-3-IT-2046.00068
Li M, Guo C, Yu H (2019) Filtered Extended State Observer Based Line-of-Sight Guidance for Path following of Unmanned Surface Vehicles with Unknown Dynamics and Disturbances.IEEE Access 7, 178401-178412.https://doi.org/10.1109/ACCESS.2019.2958855
Li M, Guo C, Yu H (2021a) Extended state observer-based integral line-of-sight guidance law for path following of underactuated unmanned surface vehicles with uncertainties and ocean currents.Int.J.Adv.Robot.Syst.18, 172988142110110.https://doi.org/10.1177/17298814211011035
Li M, Guo C, Yu H, Yuan Y (2021b) Line-of-sight-based global finite-time stable path following control of unmanned surface vehicles with actuator saturation.ISA Trans.https://doi.org/10.1016/j.isatra.2021.07.009
Lim S, Jung W, Bang H (2014) Vector field guidance for path following and arrival angle control, in:2014 International Conference on Unmanned Aircraft Systems, ICUAS 2014 -Conference Proceedings.IEEE, pp.329-338.https://doi.org/10.1109/ICUAS.2014.6842271
Liu C, Negenborn RR, Chu X, Zheng H (2018) Predictive path following based on adaptive line-of-sight for underactuated autonomous surface vessels.J.Mar.Sci.Technol.23, 483-494.https://doi.org/10.1007/S00773-017-0486-2/FIGURES/11
Liu L, Wang D, Pen, Z (2017) ESO-based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation.IEEE J.Ocean.Eng.42, 477-487.https://doi.org/10.1109/JOE.2016.2569218
Liu L, Wang D, Peng Z (2016a) ESO-based line-of-sight guidance law for straight line path following with exact sideslip compensation.Proc.World Congr.Intell.Control Autom.2016-September, 677-681.https://doi.org/10.1109/WCICA.2016.7578426
Liu L, Wang D, Peng Z (2016b) Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances.Neurocomputing 173, 799-808.https://doi.org/10.1016/J.NEUCOM.2015.08.033
Liu L, Wang D, Peng Z (2016c) Predictor-based line-of-sight guidance law for path following of underactuated marine surface vessels.Proc.6th Int.Conf.Intell.Control Inf.Process.ICICIP 2015 284-288.https://doi.org/10.1109/ICICIP.2015.7388184
Liu L, Wang D, Peng Z (2016d) Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances.Neurocomputing 173, 799-808.https://doi.org/10.1016/J.NEUCOM.2015.08.033
Liu Z, Yu L, Xiang Q, Qian T, Lou Z, Xue W (2021) Research on USV trajectory tracking method based on LOS algorithm.Proc.-2021 14th Int.Symp.Comput.Intell.Des.Isc.2021 408-411.https://doi.org/10.1109/ISCID52796.2021.00098
Loría A, Panteley E (2005) Cascaded Nonlinear Time-Varying Systems:Analysis and Design, in:Lamnabhi-Lagarrigue, F., Loría, A., Panteley, E.(Eds.), Advanced Topics in Control Systems Theory:Lecture Notes from FAP 2004.Springer London, London, 23-64.https://doi.org/10.1007/11334774_2
Maritime K (2016) World’s First Official Test Bed for Autonomous Shipping Opens in Norway[WWW Document].URL https://www.km.kongsberg.com/ks/web/nokbg0238.nsf/AllWeb/166309633F206651C125804200250951?OpenDocument (accessed 9.6.18).
MARKETS&MARKETS (2021) Autonomous Ships Market by Autonomy, Ship Type, End-Use|COVID-19 Impact Analysis|MarketsandMarketsTM[WWW Document].URL https://www.marketsandmarkets.com/Market-Reports/autonomous-ships-market-267183224.html (accessed 4.2.21).
Miao J, Wang S, Tomovic MM, Zhao Z (2017) Compound line-ofsight nonlinear path following control of underactuated marine vehicles exposed to wind, waves, and ocean currents.Nonlinear Dyn.89, 2441-2459.https://doi.org/10.1007/S11071-017-3596-9/FIGURES/11
Min B, Zhang X (2021) Concise robust fuzzy nonlinear feedback track keeping control for ships using multi-technique improved LOS guidance.Ocean Eng.224, 108734.https://doi.org/10.1016/J.OCEANENG.2021.108734
Moe S, Pettersen KY (2017) Set-Based line-of-sight (LOS) path following with collision avoidance for underactuated unmanned surface vessels under the influence of ocean currents.1st Annu.IEEE Conf.Control Technol.Appl.CCTA 2017 2017-January, 241-248.https://doi.org/10.1109/CCTA.2017.8062470
Moe S, Pettersen KY (2016) Set-based Line-of-Sight (LOS) path following with collision avoidance for underactuated unmanned surface vessel, in:24th Mediterranean Conference on Control and Automation, MED 2016.pp.402-409.https://doi.org/10.1109/MED.2016.7535964
Moe S, Pettersen KY, Fossen TI, Gravdahl JT (2016a) Line-of-sight curved path following for underactuated USVs and AUVs in the horizontal plane under the influence of ocean currents.In:24th Mediterranean Conference on Control and Automation, MED 2016:38-45.https://doi.org/10.1109/MED.2016.7536018
Moe S, Pettersen KY, Fossen TI, Gravdahl JT (2016b) Line-of-sight curved path following for underactuated USVs and AUVs in the horizontal plane under the influence of ocean currents.24th Mediterr.Conf.Control Autom.MED, 38-45.https://doi.org/10.1109/MED.2016.7536018
Moreira L, Fossen TI, Guedes Soares C (2007) Path following control system for a tanker ship model.Ocean Eng.34, 2074-2085.https://doi.org/10.1016/j.oceaneng.2007.02.005
Mousazadeh H, Jafarbiglu H, Abdolmaleki H, Omrani E, Monhaseri F, Abdollahzadeh M Reza, Mohammadi-Aghdam A, Kiapei A, Salmani-Zakaria Y, Makhsoos A (2018) Developing a navigation, guidance and obstacle avoidance algorithm for an Unmanned Surface Vehicle (USV) by algorithms fusion.Ocean Eng.159, 56-65.https://doi.org/10.1016/j.oceaneng.2018.04.018
Mu D, Wang G, Fan Y, Bai Y, Zhao Y (2018) Fuzzy-based optimal adaptive line-of-sight path following for underactuated unmanned surface vehicle with uncertainties and time-varying disturbances.Math.Probl.Eng.2018.https://doi.org/10.1155/2018/7512606
Nelson DR, Barber DB, McLain TW, Beard RW (2006) Vector field path following for small unmanned air vehicles.2006 Am.Control Conf.5788-5794.https://doi.org/10.1109/ACC.2006.1657648
Nelson DR, Barber DB, McLain TW, Beard RW (2007) Vector field path following for miniature air vehicles.IEEE Trans.Robot.23, 519-529.https://doi.org/10.1109/TRO.2007.898976
Nie J, Lin X (2019) Improved adaptive integral line-of-sight guidance law and adaptive fuzzy path following control for underactuated MSV.ISA Trans.94, 151-163.https://doi.org/10.1016/J.ISATRA.2019.04.010
Nie J, Lin X (2020) FAILOS guidance law based adaptive fuzzy finitetime path following control for underactuated MSV.Ocean Eng.195, 106726.https://doi.org/10.1016/J.OCEANENG.2019.106726
Niu G, Wan L, Zou J, Zeng J, Fan J, Sun C (2019) Intelligent pathfollowing control of unmanned surface vehicles based on improved line-of-sight guidance.IOP Conf.Ser.Mater.Sci.Eng.677, 042104.https://doi.org/10.1088/1757-899X/677/4/042104
Niu H, Lu Y, Savvaris A, Tsourdos A (2016) Efficient path following algorithm for unmanned surface vehicle.Ocean.2016-Shanghai.https://doi.org/10.1109/OCEANSAP.2016.7485430
Nomoto K, Taguchi T, Honda K, Hirano S (1957) On the steering qualities of ships.Int.Shipbuild.Prog.4, 354-370.
Oh S-R, Sun J (2010) Path following of underactuated marine surface vessels using line-of-sight based model predictive control.Ocean Eng.37, 289-295.https://doi.org/10.1016/j.oceaneng.2009.10.004
Papoulias FA (1993) On the nonlinear dynamics of pursuit guidance for marine vehicles.J.Sh.Res.37, 342-353.https://doi.org/10.5957/JSR.1993.37.4.342
Pereira A, Das J, Sukhatme GS (2008) An experimental study of station keeping on an underactuated ASV.2008 IEEE/RSJ Int.Conf.Intell.Robot.Syst.IROS 3164-3171.https://doi.org/10.1109/IROS.2008.4650991
Ren RY, Zou ZJ, Wang YD, Wang XG (2018) Adaptive Nomoto model used in the path following problem of ships.J.Mar.Sci.Technol.1-11.https://doi.org/10.1007/s00773-017-0518-y
Roberts GN (2008) Trends in marine control systems.Annu.Rev.Control 32, 263-269.https://doi.org/10.1016/J.ARCONTROL.2008.08.002
Rolls-Royce (2015) Rolls-Royce to Lead Autonomous Ship Research Project[WWW Document].URL https://www.rolls-royce.com/media/our-stories/press-releases/2015/pr-02-07-15-rolls-royce-tolead-autonomous-ship-research-project.aspx (accessed 9.6.18).
Rout R, Cui R, Han Z (2020) Modified line-of-sight guidance law with adaptive neural network control of underactuated marine vehicles with state and input constraints.IEEE Trans.Control Syst.Technol.28, 1902-1914.https://doi.org/10.1109/TCST.2020.2998798
Rubí B, Pérez R, Morcego B (2020) A Survey of Path Following Control Strategies for UAVs Focused on Quadrotors.J.Intell.Robot.Syst.Theory Appl.98, 241-265.https://doi.org/10.1007/s10846-019-01085-z
Sans-Muntadas A, Kelasidi E, Pettersen KY, Brekke E (2019) Path planning and guidance for underactuated vehicles with limited field-of-view.Ocean Eng.174, 84-95.https://doi.org/10.1016/J.OCEANENG.2019.01.027
Shojaei K, Dolatshahi M (2017) Line-of-sight target tracking control of underactuated autonomous underwater vehicles.Ocean Eng.133, 244-252.https://doi.org/10.1016/j.oceaneng.2017.02.007
Skjetne R, Jørgensen U, Teel AR (2011) Line-of-sight path-following along regularly parametrized curves solved as a generic maneuvering problem.Proc.IEEE Conf.Decis.Control 2467-2474.https://doi.org/10.1109/CDC.2011.6161364
Song D, Gan W, Yao P, Zang W, Zhang Z, Qu X (2022) Guidance and control of autonomous surface underwater vehicles for target tracking in ocean environment by deep reinforcement learning.Ocean Eng.250, 110947.https://doi.org/10.1016/j.oceaneng.2022.110947
Su Y, Wan L, Zhang D, Huang F (2021) An improved adaptive integral line-of-sight guidance law for unmanned surface vehicles with uncertainties.Appl.Ocean Res.108, 102488.https://doi.org/10.1016/J.APOR.2020.102488
Sutulo S, Guedes Soares C (2011) Mathematical models for simulation of manoeuvring performance of ships.In:Guedes Soares C, et al (Eds).Maritime Engineering and Technology.Taylor & Francis Group, London, 661-698.https://doi.org/10.13140/2.1.3538.7209
Svendsen CH, Holck NO, Galeazzi R, Blanke M (2012) L1 adaptive manoeuvring control of unmanned high-speed water craft.IFAC Proc.Vol.45, 144-151.https://doi.org/10.3182/20120919-3-IT-2046.00025
Tian Z, Zheng H, Xu W (2021) Path following of autonomous surface vehicles with line-of-sight and nonlinear model predictive control.6th Int.Conf.Transp.Inf.Saf.New Infrastruct.Constr.Better Transp.ICTIS 2021 1269-1274.https://doi.org/10.1109/ICTIS54573.2021.9798580
Wan L, Su Y, Zhang H, Shi B, AbouOmar MS (2020) An improved integral light-of-sight guidance law for path following of unmanned surface vehicles.Ocean Eng.205, 107302.https://doi.org/10.1016/J.OCEANENG.2020.107302
Wang N, Karimi HR, Li H, Su SF (2019a) Accurate Trajectory Tracking of Disturbed Surface Vehicles:A Finite-Time Control Approach.IEEE/ASME Trans.Mechatronics 24, 1064-1074.https://doi.org/10.1109/TMECH.2019.2906395
Wang N, Qian C, Sun J-C, Liu Y-C (2016) Adaptive Robust FiniteTime Trajectory Tracking Control of Fully Actuated Marine Surface Vehicles.IEEE Trans.Control Syst.Technol.24, 1454-1462.https://doi.org/10.1109/TCST.2015.2496585
Wang N, Sun Z, Yin J, Zou Z, Su SF (2019b) Fuzzy unknown observerbased robust adaptive path following control of underactuated surface vehicles subject to multiple unknowns.Ocean Eng.176, 57-64.https://doi.org/10.1016/J.OCEANENG.2019.02.017
Wang N, Sun Z, Yin J, Zheng Z (2017) Surge-varying LOS based path following control of underactuated marine vehicles with accurate disturbance observation, in:2017 IEEE 7th International Conference on Underwater System Technology:Theory and Applications (USYS).IEEE, 1-6.https://doi.org/10.1109/USYS.2017.8309464
Wang S, Yan X, Ma F, Wu P, Liu Y (2022) A novel path following approach for autonomous ships based on fast marching method and deep reinforcement learning.Ocean Eng.257, 111495.https://doi.org/10.1016/J.OCEANENG.2022.111495
Wang Y, Tong H, Fu M (2019c) Line-of-sight guidance law for path following of amphibious hovercrafts with big and time-varying sideslip compensation.Ocean Eng.172, 531-540.https://doi.org/10.1016/J.OCEANENG.2018.12.036
Wang Y, Tong H, Wang C (2019d) High-gain observer-based line-ofsight guidance for adaptive neural path following control of underactuated marine surface vessels.IEEE Access 7, 26088-26101.https://doi.org/10.1109/ACCESS.2019.2900365
Wen Y, Tao W, Zhu M, Zhou J, Xiao C (2020) Characteristic modelbased path following controller design for the unmanned surface vessel.Appl.Ocean Res.101, 102293.https://doi.org/10.1016/J.APOR.2020.102293
Weng Y, Wang N, Guedes Soares C (2020) Data-driven sideslip observer-based adaptive sliding-mode path-following control of underactuated marine vessels.Ocean Eng.197, 106910.https://doi.org/10.1016/J.OCEANENG.2019.106910
Wiig MS, Pettersen KY, Krogstad TR (2015) Uniform Semiglobal Exponential Stability of Integral Line-of-Sight Guidance Laws.IFACPapersOnLine 48, 61-68.https://doi.org/10.1016/J.IFACOL.2015.10.259
Woo J, Kim N (2016) Vector field based guidance method for docking of an unmanned surface vehicle.In:The Twelfth ISOPE Pacific/Asia Offshore Mechanics Symposium.Gold Coast, Australia, p.ISOPE-P-16-103.
Wu W, Peng Z, Wang D, Liu L, Han Q-L (2021) Network-Based Line-of-Sight Path Tracking of Underactuated Unmanned Surface Vehicles With Experiment Results.IEEE Trans.Cybern.1-11.https://doi.org/10.1109/TCYB.2021.3074396
Xu H, Fossen TI, Guedes Soares C (2020a) Uniformly semiglobally exponential stability of vector field guidance law and autopilot for path-following.Eur.J.Control 53, 88-97.https://doi.org/10.1016/j.ejcon.2019.09.007
Xu H, Guedes Soares C (2015) An optimized path following algorithm for a surface ship model.In:Guedes Soares, C., et al.(Eds.).Towards Green Marine Technology and Transport.CRC Press, 151-158.https://doi.org/10.1201/b18855-21
Xu H, Guedes Soares C (2016a) Vector field path following for surface marine vessel and parameter identification based on LS-SVM.Ocean Eng.113, 151-161.https://doi.org/10.1016/j.oceaneng.2015.12.037
Xu H, Guedes Soares C (2016b) Waypoint-following for a marine surface ship model based on vector field guidance law.In:Guedes Soares C., et al.(Eds.).Maritime Technology and Engineering 3.Taylor & Francis Group, London, 409-418
Xu H, Guedes Soares C (2018) An optimized energy-efficient path following algorithm for underactuated marine surface ship model.Int.J.Marit.Eng.Vol 160, A-411-A-421.https://doi.org/10.3940/rina.ijme.2018.a4.505
Xu H, Guedes Soares C (2020) Vector field guidance law for curved path following of an underactuated autonomous ship model.Int.J.Marit.Eng.162.https://doi.org/10.5750/IJME.V162IA3.1135
Xu H, Hinostroza MA, Guedes Soares C (2018) Estimation of hydrodynamic coefficients of a nonlinear manoeuvring mathematical model with free-running ship model tests.Int.J.Marit.Eng.Vol 160, A-213-A-226.https://doi.org/10.3940/rina.ijme.a3.2018.448
Xu H, Hinostroza MA, Guedes Soares C (2021a) Modified vector field path-following control system for an underactuated autonomous surface ship model in the presence of static obstacles.J.Mar.Sci.Eng.9, 652.https://doi.org/10.3390/jmse9060652
Xu H, Hinostroza MA, Wang Z, Guedes Soares C (2020b)Experimental investigation of shallow water effect on vessel steering model using system identification method.Ocean Eng.199, 106940.https://doi.org/10.1016/j.oceaneng.2020.106940
Xu H, Oliveira P, Guedes Soares C (2021b) L1 adaptive backstepping control for path-following of underactuated marine surface ships.Eur.J.Control 58, 357-372.https://doi.org/10.1016/j.ejcon.2020.08.003
Xu H, Rong H, Guedes Soares C (2019) Use of AIS data for guidance and control of path-following autonomous vessels.Ocean Eng.194, 106635.https://doi.org/10.1016/j.oceaneng.2019.106635
Yamasaki T, Enomoto K, Takano H, Baba Y, Balakrishnan SN (2009)Advanced pure pursuit guidance via sliding mode approach for chase UAV.AIAA Guid.Navig.Control Conf.Exhib.https://doi.org/10.2514/6.2009-6298
Yanushevsky R (2011) Guidance of unmanned aerial vehicles.Taylor & Francis
Yu Y, Guo C, Yu H (2018) Finite-time predictor line-of-sight-based adaptive neural network path following for unmanned surface vessels with unknown dynamics and input saturation.Int.J.Adv.Robot.Syst.15, 172988141881469.https://doi.org/10.1177/1729881418814699
Zhang G, Han J, Li J, Zhang X (2022) APF-based intelligent navigation approach for USV in presence of mixed potential directions:Guidance and control design.Ocean Eng.260, 111972.https://doi.org/10.1016/J.OCEANENG.2022.111972
Zhang H, Zhang X, Bu R (2022) Sliding mode adaptive control for ship path following with sideslip angle observer.Ocean Eng.251, 111106.https://doi.org/10.1016/J.OCEANENG.2022.111106
Zhang Z, Zhao Yuhan, Zhao G, Wang H, Zhao Yi (2021) Pathfollowing control method for surface ships based on a new guidance algorithm.J.Mar.Sci.Eng.2021, 9(2):166.https://doi.org/10.3390/JMSE9020166
Zhu M, Sun W, Hahn A, Wen Y, Xiao C, Tao W (2020) Adaptive modeling of maritime autonomous surface ships with uncertainty using a weighted LS-SVR robust to outliers.Ocean Eng.200, 107053.https://doi.org/10.1016/J.OCEANENG.2020.107053