|Table of Contents|

Citation:
 Anil Kumar Korupoju,Arun Shankar Vilwathilakam,Asokendu Samanta.Effect of Weld Parameters on Effective Notch Stress at Weld Root and Toe of Load Carrying Cruciform Joints[J].Journal of Marine Science and Application,2022,(4):67-77.[doi:10.1007/s11804-022-00299-2]
Click and Copy

Effect of Weld Parameters on Effective Notch Stress at Weld Root and Toe of Load Carrying Cruciform Joints

Info

Title:
Effect of Weld Parameters on Effective Notch Stress at Weld Root and Toe of Load Carrying Cruciform Joints
Author(s):
Anil Kumar Korupoju Arun Shankar Vilwathilakam Asokendu Samanta
Affilations:
Author(s):
Anil Kumar Korupoju Arun Shankar Vilwathilakam Asokendu Samanta
Research&Development Division, Indian Register of Shipping, Mumbai, India-400 072
Keywords:
Crack initiation|Critical leg length|Cruciform joints|Effective notch stress|Load carrying joint|Root failure|T-welded joint|Weld penetration|Weld root|Weld toe
分类号:
-
DOI:
10.1007/s11804-022-00299-2
Abstract:
Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in the fatigue design of the joint. In this paper, the effect of weld geometry on fatigue failure of load carrying cruciform joints in ships is investigated using Effective Notch Stress (ENS) approach. A fictitious notch of 1 mm radius is introduced at the weld root and toe and fatigue stress is evaluated. The effect of weld leg length (l) and weld penetration depth (p) on ENS at weld root and toe are determined. The critical weld leg length (lcr) at which fatigue failure transitions from weld root to weld toe is investigated. An approximation formula for determination of the critical weld leg length considering weld penetration depth (p) is proposed.

References:

Fricke W (2008) Guideline for the Fatigue Assessment by Notch Stress Analysis for Welded Structures.IIW-Doc.XIII-2240r1-08/XV-1289r1-08
Fricke W (2013) IIW guideline for the assessment of weld root fatigue.Welding in the World 57, 753-791.https://doi.org/10.1007/s40194-013-0066-y
Hobbacher A (2006) Recommendations for Fatigue Design of Welded Joints and Components.IIW doc.IIW-2259-15-03 Second Edition
Hong J K (2013) Evaluation of Weld Root Failure Using Battelle Structural Stress Method.ASME.J.Offshore Mech.Arct.Eng.May 2013; 135(2):021404.https://doi.org/10.1115/1.4007329
IACS (2021) Common Structural Rules for Bulk Carriers and Oil Tankers (CSR).London, UK
Kainuma S, Mori T (2006) A fatigue strength evaluation method for load-carrying fillet welded cruciform joints.International Journal of Fatigue 28(8), 864-872.https://doi:10.1016/j.ijfatigue.2005.10.004
Kainuma S, Mori T (2008) A study on fatigue crack initiation point of load-carrying fillet welded cruciform joints.International Journal of Fatigue 30(9), 1669-1677.https://doi:org/10.1016/j.ijfatigue.2007.11.003
Kinoshita K, Arakawa S (2014) Evaluation of Crack Initiation Points of Load-Carrying Cruciform Welded Joints Based on Effective Notch Stress Approach.Civil Engineering Dimension 16(2), 68-74.https://doi.org/10.9744/ced.16.2.68-74
Lee C, Chang K, Jang G, Lee C (2009) Effect of weld geometry on the fatigue life of non-load-carrying fillet welded cruciform joints.Engineering Failure Analysis 16(3), 849-855.https://doi.org/10.1016/j.engfailanal.2008.07.004
Maddox SJ (2008) Status review on fatigue performance of fillet welds.ASME, J Offshore Mech Arct Eng 130(3):031006.https://doi.org/10.1115/1.2827941
Mori T & Ichimiya M (1999) Fatigue crack initiation point in load carrying fillet-welded cruciform joints.Welding International 13:10, 786-794.https://doi.org/10.1080/09507119909449005
Petinov S V, Kim W S, Paik Y M (2006) Assessment of fatigue strength of weld root in ship structure:an approximate procedure.Ships and Offshore Structures 1:1, 55-60.https://doi.org/10.1533/saos.2005.0002
Radaj D, Sonsino C M, Fricke W (2006) Fatigue assessment of welded joints by local approaches.2nd ed.Woodhead Publishing, Cambridge, UK, 126-130
Radaj D, Vormwald M (2013) Advanced methods of fatigue assessment.Springer Berlin, Heidelberg, 4-28 https://doi:10.1007/978-3-642-30740-9
Song W, Liu X, Berto F, Wang P, Fang H (2017) Fatigue failure transition analysis in load-carrying cruciform welded joints based on strain energy density approach.Fatigue Fract Eng Mater Struct 40:1164-1177.https://doi:10.1111/ffe.12588
Song W, Liu X, Razavi SMJ (2018) Fatigue assessment of steel loadcarrying cruciform welded joints by means of local approaches.Fatigue Fract Eng Mater Struct, 2018:1-16.https://doi.org/10.1111/ffe.12870
Xing S, Dong P, Threstha A (2016) Analysis of fatigue failure mode transition in load-carrying fillet-welded connections.Marine Structures 46, 102-126.https://doi:10.1016/j.marstruc.2016.01.001
Xing S, Dong P, Wang P (2017) A quantitative weld sizing criterion for fatigue design of load-carrying fillet-welded connections.International Journal of Fatigue, 101:448-458.https://doi:10.1016/j.ijfatigue.2017.01.003

Memo

Memo:
Received date:2022-05-10;Accepted date:2022-07-24。
Corresponding author:Anil Kumar Korupoju,E-mail:anil.korupoju@irclass.org
Last Update: 2023-01-05