|Table of Contents|

Citation:
 B. Yeter,Y. Garbatov,C. Guedes Soares.Review on Artificial Intelligence-aided Life Extension Assessment of Offshore Wind Support Structures[J].Journal of Marine Science and Application,2022,(4):26-54.[doi:10.1007/s11804-022-00298-3]
Click and Copy

Review on Artificial Intelligence-aided Life Extension Assessment of Offshore Wind Support Structures

Info

Title:
Review on Artificial Intelligence-aided Life Extension Assessment of Offshore Wind Support Structures
Author(s):
B. Yeter Y. Garbatov C. Guedes Soares
Affilations:
Author(s):
B. Yeter Y. Garbatov C. Guedes Soares
Centre for Marine Technology and Ocean Engineering(CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
Keywords:
Offshore wind|Life extension|Artificial intelligence|Fatigue|Structural integrity|Corrosion-related cracking|Risk-based maintenance
分类号:
-
DOI:
10.1007/s11804-022-00298-3
Abstract:
The primary objective of the present literature review is to provide a constructive and systematical discussion based on the relevant development, unsolved issues, gaps, and misconceptions in the literature regarding the fields of study that are building blocks of artificial intelligence-aided life extension assessment for offshore wind turbine support structures. The present review aims to set up the needed guidelines to develop a multi-disciplinary framework for life extension management and certification of the support structures for offshore wind turbines using artificial intelligence. The main focus of the literature review centres around the intelligent risk-based life extension management of offshore wind turbine support structures. In this regard, big data analytics, advanced signal processing techniques, supervised and unsupervised machine learning methods are discussed within the structural health monitoring and condition-based maintenance planning, the development of digital twins. Furthermore, the present review discusses the critical failure mechanisms affecting the structural condition, such as high-cycle fatigue, low-cycle fatigue, fracture, ultimate strength, and corrosion, considering deterministic and probabilistic approaches.

References:

Adedipe O, Brennan F, Kolios A (2016) Review of corrosion fatigue in offshore structures:Present status and challenges in the offshore wind sector.Renewable and Sustainable Energy Reviews 61:141-154.https://doi.org/10.1016/j.rser.2016.02.017
Akaike H (1973) Information Theory as an Extension of the Maximum Likelihood Principle.Proceedings of the Second International Symposium on Information Theory 267-281
Alati N, Nava V, Failla G, Arena F, Santini A (2013) Fatigue analysis of offshore wind turbines on fixed support structures.Key Engineering Materials, City 539-546.
Alvarez MG, Lapitz P, Ruzzante J (2012) Analysis of acoustic emission signals generated from SCC propagation.Corrosion science 55:5-9.https://doi.org/10.1016/j.corsci.2011.08.014
Amanatidis G (2019) European Policies on Climate and Energy towards 2020, 2030 and 2050.
Amirafshari P, Brennan F, Kolios A (2021) A fracture mechanics framework for optimising design and inspection of offshore wind turbine support structures against fatigue failure.Wind Energy Science 6(3):677-699.https://doi.org/10.5194/wes-6-677-2021
Anderson TL (2017) Fracture mechanics:fundamentals and applications.CRS press, Taylor & Francis Group.https://doi.org/10.1201/97813 15370293
Antoniadou I, Dervilis N, Papatheou E, Maguire AE, Worden K (2015) Aspects of structural health and condition monitoring of offshore wind turbines.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences 373(2035):20140075.https://doi.org/10.1098/rsta.2014.0075
Artymiak P, Bukowski L, Feliks J, Narberhaus S, Zenner H (1999).Determination of S-N curves with the application of artificial neural networks.Fatigue & Fracture of Engineering Materials & Structures 22(8):723-728.https://doi.org/10.1046/j.1460-2695.1999.t01-1-00198.x
ASM MI (1996) ASM Handbook.ASM International
Aswathanarayana U, Divi RS (2009) Energy portfolios.CRC Press.https://doi.org/10.1201/9780203876602
Ayala-Uraga E, Moan T (2002) System reliability issues of offshore structures considering fatigue failure and updating based on inspection.1st International ASRANet Colloquium, Glasgow
Bach-Andersen M, R?mer-Odgaard B, Winther O (2018).Deep learning for automated drivetrain fault detection.Wind Energy 21(1):29-41.https://doi.org/10.1002/we.2142
Bangalore P, Patriksson M (2018) Analysis of SCADA data for early fault detection, with application to the maintenance management of wind turbines.Renewable energy 115:521-532.https://doi.org/10.1016/j.renene.2017.08.073
Barltrop NDP, Adams AJ, Hallam MG (1991).Dynamics of fixed marine structures.Butterworth-Heinemann Oxford.
Barone G, Frangopol DM (2014) Life-cycle maintenance of deteriorating structures by multi-objective optimization involving reliability, risk, availability, hazard and cost.Structural Safety 48:40-50.https://doi.org/10.1016/j.strusafe.2014.02.002
Barsom JM (1976) Fatigue Crack Growth Under Variable-Amplitude Loading in Various Bridge Steels.Fatigue Crack Growth under Spectrum Loads 595:217-235
Bayoumi MR (1996) The mechanics and mechanisms of fracture in stress corrosion cracking of aluminium alloys.Engineering Fracture Mechanics 54(6):879-889.https://doi.org/10.1016/0013-7944(93) E0027-Z
Benasciutti D (2004) Fatigue analysis of random loadings.PhD.Thesis University of Ferrara, Italy
Benasciutti D, Tovo R (2004).Rainflow cycle distribution and fatigue damage in Gaussian random loadings.University of Ferrara, Italy Report No.129
Benasciutti D, Tovo R (2006) Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes.Probabilistic Engineering Mechanics, 21(4):287-299.https://doi.org/10.1016/j.probengmech.2005.10.003
Black AR, Mathiesen T, Hilbert LR (2015) Corrosion protection of offshore wind foundations.NACE International
Blanco MI (2009).The economics of wind energy.Renewable and sustainable energy reviews 13(6-7):1372-1382.https://doi.org/10.1016/j.rser.2008.09.004
Brennan F (2013) Risk Based Maintenance for Offshore Wind Structures.Procedia CIRP 11:296-300.https://doi.org/10.1016/j.procir.2013.07.021
Brennan FP, Falzarano J, Gao Z, Landet E, Le Boulluec M, Rim CW, Sirkar J, Sun L, Suzuki H, Thiry A, Trarieux F, Wang CM (2012) Report of Specialist Committee V.4-Offshore Renewable Energy.18th International Ship and Offshore Structures Congress (ISSC 2012)
Bu?ar T, Nagode M, Fajdiga M (2006) A neural network approach to describing the scatter of S-N curves.International journal of fatigue 28(4):311-323.https://doi.org/10.1016/j.ijfatigue.2005.08.002
Calabrese L, Galeano M, Proverbio E, Di Pietro D, Cappuccini F, Donato A (2016) Monitoring of 13% Cr martensitic stainless steel corrosion in chloride solution in presence of thiosulphate by acoustic emission technique.Corrosion Science 111:151-161.https://doi.org/10.1016/j.corsci.2016.05.010
Carden EP, Fanning P (2004) Vibration based condition monitoring:a review.Structural health monitoring 3(4):355-377.https://doi.org/10.1177/1475921704047500
Castro-Santos L, Martins E, Guedes Soares C (2016) Methodology to calculate the costs of a floating offshore renewable energy farm.Energies 9(5):324.https://doi.org/10.3390/en9050324
Chaudhury GK, Dover WD (1985) Fatigue analysis of offshore platforms subjected to sea wave loadings.International Journal of Fatigue 7(1):13-19
Cheng P (2002) A Reliability Based Design Methodology for Extreme Responses of Offshore Wind Turbines.PhD.Thesis Delft University of Technology, DUWIND
Chojaczyk AA, Teixeira AP, Neves LC, Cardoso JB, Guedes Soares C (2015) Review and application of artificial neural networks models in reliability analysis of steel structures.Structural Safety 52:78-89.https://doi.org/10.1016/j.strusafe.2014.09.002
Crooker TW (1983) Corrosion Fatigue:Mechanics, Metallurgy, Electrochemistry, and Engineering:a Symposium.ASTM International
Davey HE, Nimmo A (2012) Offshore Wind Cost Reduction, Pathways Study.Cost Reduction Study.The Crown Estate, London, United Kingdom
Delaunois F, Tshimombo A, Stanciu V, Vitry V (2016) Monitoring of chloride stress corrosion cracking of austenitic stainless steel:identification of the phases of the corrosion process and use of a modified accelerated test.Corrosion Science 110:273-283.https://doi.org/10.1016/j.corsci.2016.04.038
Deng J (2006) Structural reliability analysis for implicit performance function using radial basis function network.International journal of solids and structures 43(11-12):3255-3291.https://doi.org/10.1016/j.ijsolstr.2005.05.055
Deng J, Gu D, Li X, Yue ZQ (2005) Structural reliability analysis for implicit performance functions using artificial neural network.Structural safety 27(1):25-48.https://doi.org/10.1016/j.strusafe.2004.03.004
Díaz H, Guedes Soares C (2020a) Review of the current status, technology and future trends of offshore wind farms.Ocean Engineering 209:107381.https://doi.org/10.1016/j.oceaneng.2020.107381
Díaz H, Guedes Soares C (2020b) An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline.Renewable and Sustainable Energy Reviews 134:110328.https://doi.org/10.1016/j.rser.2020.110328
Dinda S, Kujawski D (2004) Correlation and prediction of fatigue crack growth for different R-ratios using Kmax and ΔK+ parameters.Engineering Fracture Mechanics 71(12):1779-1790.https://doi.org/10.1016/j.engfracmech.2003.06.001
Dirlik T (1985) Application of computers in fatigue analysis.PhD.Thesis Warwich University
Djukic MB, Zeravcic VS, Bakic G, Sedmak A, Rajicic B (2014) Hydrogen embrittlement of low carbon structural steel.Procedia Materials Science 3:1167-1172.https://doi.org/10.1016/j.mspro.2014.06.190
DNV (2016a) Lifetime extension of wind turbines.DNVGL-ST-0262
DNV (2016b) Certification of lifetime extension of wind turbines.DNVGL-ST-0263
Dong WB, Moan T, Gao Z (2011) Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain.Engineering Structures 33:2002-2014.https://doi.org/10.1016/j.engstruct.2011.02.037
Dong WB, Moan T, Gao Z (2012a) Fatigue Reliability Analysis of the Jcket Support Structure for Offshore Wind Turbine Considering the Effect of Corrosion and Inspection.Reliability Engineering & System Safety, 106, 11-27.https://doi.org/10.1016/j.ress.2012.06.011
Dong WB, Moan T, Gao Z (2012b) Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection.Reliability Engineering & System Safety 106:11-27.https://doi.org/10.1016/j.ress.2012.06.011
Dong Y, Frangopol DM (2015) Risk-informed life-cycle optimum inspection and maintenance of ship structures considering corrosion and fatigue.Ocean Engineering 101:161-171.https://doi.org/10.1016/j.oceaneng.2015.04.020
Duguid L (2017) Offshore Wind Farm Substructure Monitoring And Inspection, PN000205-LRT-001
Faber MH, S?rensen JD, Kroon IB (1992) Optimal inspection Strategies for Offshore Structural Systems.International Conference on Offshore Mechanics and Arctic Engineering, Aalborg, 145-151
Fajuyigbe A, Brennan F (2021) Fitness-for-purpose assessment of cracked offshore wind turbine monopile.Marine Structures 77:102965.https://doi.org/10.1016/j.marstruc.2021.102965
Feng L, He J, Hu L, Shi H, Yu C, Wang S, Yang S (2020) A parametric study on effects of pitting corrosion on steel plate’s ultimate strength.Applied Ocean Research 95:102026.https://doi.org/10.1016/j.apor.2019.102026
Frangopol DM (2011) Life-cycle performance, management, and optimisation of structural systems under uncertainty:accomplishments and challenges 1.Structure and Infrastructure Engineering 7(6):389-413.https://doi.org/10.1080/15732471003594427
Fu J, Chu J, Guo P, Chen Z (2019) Condition monitoring of wind turbine gearbox bearing based on deep learning model.IEEE Access 7:57078-57087.https://doi.org/10.1109/ACCESS.2019.2912621
Garbatov Y, Guedes Soares C, Parunov J (2014a) Fatigue Strength Experiments of Corroded Small Scale Steel Specimens.International Journal of Fatigue 59:137-144.http://dx.doi.org/10.1016/j.ijfatigue.2013.09.005
Garbatov Y, Guedes Soares C, Parunov J, Kodvanj J (2014b) Tensile Strength Assessment of Corroded Small Scale Specimens.Corrosion Science 85:296-303.https://doi.org/10.1016/j.corsci.2014.04.031
Garbatov Y, Guedes Soares C, Wang G (2007) Nonlinear Time Dependent Corrosion Wastage of Deck Plates of Ballast and Cargo Tanks of Tankers.Journal of Offshore Mechanics and Arctic Engineering 129(1):48-55.https://doi.org/10.1115/1.2426987
Genel K (2004) Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests.International Journal of Fatigue 26(10):1027-1035.https://doi.org/10.1016/j.ijfatigue.2004.03.009
Gentils T, Wang L, Kolios A (2017) Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm.Applied energy 199:187-204.https://doi.org/10.1016/j.apenergy.2017.05.009
Gilbert PT (1956) Corrosion-Fatigue.Metallurgical reviews 1(1):379-417
Gomez HC, Gur T, Dolan D (2013) Structural condition assessment of offshore wind turbine monopile foundations using vibration monitoring data.Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2013, 86940B
Gomes HM, Awruch AM (2004) Comparison of response surface and neural network with other methods for structural reliability analysis.Structural safety 26(1):49-67.https://doi.org/10.1016/S0167-4730(03) 00022-5
Gope D, Gope PC, Thakur A, Yadav A (2015) Application of artificial neural network for predicting crack growth direction in multiple cracks geometry.Applied Soft Computing 30:514-528.https://doi.org/10.1016/j.asoc.2015.02.003
Greenacre P, Gross R, Heptonstall P (2010) Great expectations:The cost of offshore wind in UK waters.UK Energy Research Grolvlen M, Bardal E, Berge S, Eide O, Engesvik K, Haagensen PJ, Orjasaether O (1989) Localized Corrosion on Offshore Tubular·Structures:Inspection and Repair Criteria.Offshore Technology Conference Guedes Soares C, Garbatov Y (1996) Fatigue reliability of the ship hull girder accounting for inspection and repair.Reliability Engineering & System Safety 51(3):341-351.https://doi.org/10.1016/0951-8320(95) 00123-9
Halfpenny A (1999) A frequency domain approach for fatigue life estimation from finite element analysis.Key Engineering Materials 167:401-410
Hameed Z, Ahn S-H, Cho YM (2010) Practical aspects of a condition monitoring system for a wind turbine with emphasis on its design, system architecture, testing and installation.Renewable Energy 35(5):879-894.https://doi.org/10.1016/j.renene.2009.10.031
Hameed Z, Wang K (2012) Development of optimal maintenance strategies for offshore wind turbine by using artificial neural network.Wind Engineering 36(3):353-364.https://doi.org/10.1260/0309-524X.36.3.35
Hilbert LR, Black AR, Andersen F, Mathiesen T (2011) Inspection and monitoring of corrosion inside monopile foundations for offshore wind turbines, Paper no:4730.EUROCORR, 1-14
Hobbacher A (2009) Recommendations for Fatigue Design of Welded Joints and Components.IIW doc.1823-07, Welding Research Council Bulletin 520.International Institute of Welding
Hoeppner DW (1979) Model for prediction of fatigue lives based upon a pitting corrosion fatigue process.Fatigue Mechanisms
Ibrahim FK (1989).Threshold stress intensity behaviour of cracked steel structural components.Fatigue & Fracture of Engineering Materials & Structures 12(6):543-552.https://doi.org/10.1111/j.1460-2695.1989.tb00562.x
IEC 61400-3 (2009) Wind Turbines.Part 3:Design requirements for offshore wind turbines
Irwin GR (1957) Analysis of Stresses and Strains near the End of a Crack Traversing A Plate.Journal of Applied Mechanics, ASME 24:361-364.https://doi.org/10.1115/1.4011547
Jacob A, Mehmanparast A (2021) Crack growth direction effects on corrosion-fatigue behaviour of offshore wind turbine steel weldments.Marine Structures 75:102881.https://doi.org/10.1016/j.marstruc.2020.102881
Jakubowski M (2015) Influence of pitting corrosion on fatigue and corrosion fatigue of ship and offshore structures, part II:load-PITcrack interaction.Polish Maritime Research 22(3):57-66
Jiménez AA, Gómez Mu?oz CQ, García Márquez FP (2018) Machine learning for wind turbine blades maintenance management.Energies 11(1):13.https://doi.org/10.3390/en11010013
Jiménez AA, Márquez FPG, Moraleda VB, Mu?oz CQG (2019) Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis.Renewable energy 132:1034-1048.https://doi.org/10.1016/j.renene.2018.08.050
Jomdecha C, Prateepasen A, Kaewtrakulpong P (2007) Study on source location using an acoustic emission system for various corrosion types.NDT & E International 40(8):584-593.https://doi.org/10.1016/j.ndteint.2007.05.003
Kang J, Wang Z, Guedes Soares C (2020) Condition-based maintenance for offshore wind turbines based on support vector machine.Energies 13(14):3518.https://doi.org/10.3390/en13143518
Kang J, Guedes Soares C (2020) An opportunistic maintenance policy for offshore wind farms.Ocean Engineering 216:108075.https://doi.org/10.1016/j.oceaneng.2020.108075
Kang J, Sobral J, Guedes Soares C (2019) Review of conditionbased maintenance strategies for offshore wind energy.Journal of Marine Science and Application 18(1):1-16.https://doi.org/10.3390/en13143518
Karmakar D, Bagbanci H, Guedes Soares C (2016) Long-term extreme load prediction of spar and semisubmersible floating wind turbines using the environmental contour method.Journal of Offshore Mechanics and Arctic Engineering 138(2):021601-021601-021609.https://doi.org/10.1115/1.4032099
Kawai S, Kasai K (1985) Considerations of allowable stress of corrosion fatigue (focused on the influence of pitting).Fatigue & Fracture of Engineering Materials & Structures 8(2):115-127.https://doi.org/10.1111/j.1460-2695.1985.tb01198.x
Kim B, Wang XZ, Shin YS (2007) Extreme load and fatigue damage on FPSO in combined waves and swells.10th International symposium on practical design of ships and other floating structures, 203-210
Kim KS, Kim BO, Kim YK, Lee CH, Lee SW (2005) A study on the low cycle fatigue behavior of the steel for shipbuilding industry.Key Engineering Materials, 10-15.https://doi.org/10.4028/www.scientific.net/KEM.297-300.10
Kirchgeorg T, Weinberg I, H?rnig M, Baier R, Schmid M, Brockmeyer B (2018) Emissions from corrosion protection systems of offshore wind farms:Evaluation of the potential impact on the marine environment.Marine pollution bulletin 136:257-268.https://doi.org/10.1016/j.marpolbul.2018.08.058
Kohavi R, John GH (1997) Wrappers for feature subset selection.Artificial intelligence 97(1-2):273-324.Wrappers for feature subset selection
Kondo Y (1989) Prediction of fatigue crack initiation life based on pit growth.Corrosion 45(1):7-11.https://doi.org/10.5006/1.3577891
Kost C, Mayer JN, Thomsen J, Hartmann N, Senkpiel C, Philipps S, Nold S, Lude S, Saad N, Schlegl T (2013) Levelized cost of electricity renewable energy technologies.Fraunhofer Institute for Solar Energy Systems ISE
Koukal A, Breitner MH (2013) A decision support tool for the risk management of offshore wind energy projects.Proceedings of the 11th International Conference on Wirtschaftsinformatik, Leipzig, 1683-1697
Kova? J, Legat A, Zajec B, Kosec T, Govekar E (2015) Detection and characterization of stainless steel SCC by the analysis of crack related acoustic emission.Ultrasonics 62:312-322.https://doi.org/10.1016/j.ultras.2015.06.005
Kusiak A, Zhang Z, Verma A (2013) Prediction, operations, and condition monitoring in wind energy.Energy 60:1-12.https://doi.org/10.1016/j.energy.2013.07.051
Langley P (1994) Selection of relevant features in machine learning.Proceedings of the AAAI Fall symposium on relevance, 245-271
Lantz E, Wiser R, Hand M (2012) The past and future cost of wind energy.National Renewable Energy Laboratory, Golden, CO;Report No.NREL/TP-6A20-53510
Larrosa NO, Akid R, Ainsworth RA (2018) Corrosion-fatigue:a review of damage tolerance models.International Materials Reviews 63(5):283-308.https://doi.org/10.1080/09506608.2017.1375644
Lee S-y, Jo C, Bergan P, Pettersen B, Chang D (2016) Life-cycle costbased design procedure to determine the optimal environmental design load and target reliability in offshore installations.Structural Safety 59:96-107.https://doi.org/10.1016/j.strusafe.2015.12.002
Levitt AC, Kempton W, Smith AP, Musial W, Firestone J (2011) Pricing offshore wind power.Energy Policy 39(10):6408-6421.https://doi.org/10.1016/j.enpol.2011.07.044
Lian J, Cai O, Dong X, Jiang Q, Zhao Y (2019) Health monitoring and safety evaluation of the offshore wind turbine structure:a review and discussion of future development.Sustainability 11(2):494.https://doi.org/10.3390/su11020494
Lindley TC, McIntyre P, Trant PJ (1982) Fatigue-crack initiation at corrosion pits.Metals technology 9(1):135-142.https://doi.org/10.1179/030716982803286403
Liu K, Yan R-J, Guedes Soares C (2018a) Optimal sensor placement and assessment for modal identification.Ocean Engineering 165:209-220.https://doi.org/10.1016/j.oceaneng.2018.07.034
Liu K, Yan R-J, Guedes Soares C (2018b) Damage identification in offshore jacket structures based on modal flexibility.Ocean Engineering 170:171-185.https://doi.org/10.1016/j.oceaneng.2018.10.014
Liu K, Yan R-J, Guedes Soares C (2018c) An improved model updating technique based on modal data.Ocean Engineering 154:277-287.https://doi.org/10.1016/j.oceaneng.2018.02.011
Liu W, Tang B, Jiang Y (2010) Status and problems of wind turbine structural health monitoring techniques in China.Renewable Energy 35(7):1414-1418.https://doi.org/10.1016/j.renene.2010.01.006
Long L, Mai QA, Morato PG, S?rensen JD, Th?ns S (2020) Information value-based optimization of structural and environmental monitoring for offshore wind turbines support structures.Renewable Energy 159:1036-1046.https://doi.org/10.1016/j.renene.2020.06.038
Lu Y, Sun L, Zhang X, Feng F, Kang J, Fu G (2018) Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach.Applied Ocean Research 74:69-79.https://doi.org/10.1016/j.apor.2018.02.016
Madsen HO, Skjong RK, Tallin AG (1987) Probabilistic fatigue crack growth analysis of offshore structures, with reliability updating through inspection.Proceedings of Marine Structural Reliability Engineering Symposium, Arlington, 45-55
Madsen HO, S?rensen JD (1990) Probability-based optimization of fatigue design, inspection and maintenance.Proceedings of Fourth International Symposium on Integrity of Offshore Structures, 421-432
Madsen HO, Torhaug R, Cramer EH (1991) Probability-based cost benefit analysis of fatigue design, inspection and maintenance.Marine Structural Inspection, Maintenance and Monitoring symposium
Mao M, Zhang X, Tu S, Xuan F (2014) Prediction of crack initiation life due to corrosion pits.Journal of Aircraft 51(3):805-810.https://doi.org/10.2514/1.C032436
Márquez-Domínguez S, S?rensen JD (2012) Fatigue Reliability and Calibration of Fatigue Design Factors for Offshore Wind Turbines.Energies 5(6):1816-1834.https://doi.org/10.3390/en5061816
Márquez FPG, Tobias AM, Pérez JMP, Papaelias M (2012) Condition monitoring of wind turbines:Techniques and methods.Renewable Energy 46:169-178.https://doi.org/10.1016/j.renene.2012.03.003
Marti-Puig P, Blanco-M A, Cárdenas JJ, Cusidó J, Solé-Casals J (2018) Effects of the pre-processing algorithms in fault diagnosis of wind turbines.Environmental modelling & software 110:119-128.https://doi.org/10.1016/j.envsoft.2018.05.002
Martinez-Luengo M, Kolios A, Wang L (2016) Structural health monitoring of offshore wind turbines:A review through the Statistical Pattern Recognition Paradigm.Renewable and Sustainable Energy Reviews 64:91-105
Masi G, Matteucci F, Tacq J (2018) State of the Art Study on Materials and Solutions against Corrosion in Offshore Structures
Moan T (1998) Target Levels for Structural Reliability and Risk Analysis of Offshore Structures.Risk and Reliability in Marine Technology, 351-368
Moan T (2005) Reliability-based management of inspection, maintenance and repair of offshore structures.Structure and Infrastructure Engineering 1(1):33-62.https://doi.org/10.1080/15732470412331 289314
Moan T (2008) Reliability of aged offshore structures.Condition assessment of aged structures, 287-352
Moan T, Song R (2000) Implications of inspection updating on system fatigue reliability of offshore structures.Journal of Offshore Mechanics and Arctic Engineering 122(3):173-180.https://doi.org/10.1115/1.1286601
Moghaddam BT, Hamedany AM, Mehmanparast A, Brennan F, Nikbin K, Davies CM (2019) Numerical analysis of pitting corrosion fatigue in floating offshore wind turbine foundations.Procedia Structural Integrity 17:64-71.https://doi.org/10.1016/j.prostr.2019.08.010.
Moghaddam BT, Hamedany AM, Taylor J, Mehmanparast A, Brennan F, Davies CM, Nikbin K (2020) Structural integrity assessment of floating offshore wind turbine support structures.Ocean Engineering 208:107487.https://doi.org/10.1016/j.oceaneng.2020.107487
Momber A (2011) Corrosion and corrosion protection of support structures for offshore wind energy devices (OWEA).Materials and Corrosion 62(5):391-404.https://doi.org/10.1002/maco.2010 05691
Mrsnik M, Slavic J, Boltezar M (2013).Frequency-domain methods for a vibration-fatigue-life estimation-Application to real data.International Journal of Fatigue 47:8-17.https://doi.org/10.1016/j.ijfatigue.2012.07.005
Nasiri S, Khosravani MR, Weinberg K (2017) Fracture mechanics and mechanical fault detection by artificial intelligence methods:A review.Engineering Failure Analysis 81:270-293.https://doi.org/10.1016/j.engfailanal.2017.07.011
Nguyen TAT, Chou S-Y (2018) Maintenance strategy selection for improving cost-effectiveness of offshore wind systems.Energy conversion and management 157:86-95.https://doi.org/10.1016/j.enconman.2017.11.090
Nielsen JS, S?rensen JD (2021) Risk-based derivation of target reliability levels for life extension of wind turbine structural components.Wind Energy 24(9):939-956.https://doi.org/10.1002/we.2610
Niemi E, Fricke W, Maddox S (2004) Structural Stress Approach to Fatigue Analysis of Welded Components-Designer′s Guide
Niemi E, Fricke W, Maddox SJ (2018a) The Structural Hot-Spot Stress Approach to Fatigue Analysis.Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components:Designer’s Guide, 5-12.https://doi.org/10.1007/978-981-10-5568-3_2
Niemi E, Fricke W, Maddox SJ (2018b) Structural Hot-Spot Stress Determination Using Finite Element Analysis.Structural HotSpot Stress Approach to Fatigue Analysis of Welded Components:Designer’s Guide, 17-31.https://doi.org/10.1007/978-981-10-5568-3_4
N?hr-Nielsen L (2018) Corrosion Protection of Offshore Wind Power Plants.GfKORR, Gesellschaft für Korrosionsschutz, ANNUAL CONFERENCE 2018
Ok D, Pu Y, Incecik A (2007) Artificial neural networks and their application to assessment of ultimate strength of plates with pitting corrosion.Ocean Engineering 34(17-18):2222-2230.https://doi.org/10.1016/j.oceaneng.2007.06.007
Okasha NM, Frangopol DM (2009) Lifetime-oriented multi-objective optimization of structural maintenance considering system reliability, redundancy and life-cycle cost using GA.Structural Safety 31(6):460-474.https://doi.org/10.1016/j.strusafe.2009.06.005
Onoufriou T (1999) Reliability based inspection planning of offshore structures.Marine structures 12(7):521-539.https://doi.org/10.1016/S0951-8339(99) 00030-1
Oritz K, Chen NK (1987) Fatigue damage prediction for stationary wide-band stresses.5th International Conference on the Applications of Statistics and Probability in Civil Engineering
Ossai CI, Boswell B, Davies IJ (2016) A Markovian approach for modelling the effects of maintenance on downtime and failure risk of wind turbine components.Renewable energy 96:775-783.https://doi.org/10.1016/j.renene.2016.05.022
Papadrakakis M, Papadopoulos V, Lagaros ND (1996) Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation.Computer methods in applied mechanics and engineering 136(1-2):145-163.https://doi.org/10.1016/0045-7825(96) 01011-0
Papadrakakis M, Lagaros ND (2002) Reliability-based structural optimization using neural networks and Monte Carlo simulation.Computer methods in applied mechanics and engineering 191(32):3491-3507.https://doi.org/10.1016/S0045-7825(02) 00287-6
Paris P, Erdogan F (1963) A critical analysis of crack propagation laws.Journal of Basic Engineering 85:528-534.https://doi.org/10.1115/1.3656900
Paris PC, Gomez MP, Anderson WE (1961) A rational analytic theory of fatigue.The Trend in Engineering 13:9-14
Pidaparti RMV, Palakal MJ (1995) Neural network approach to fatigue-crack-growth predictions under aircraft spectrum loadings.Journal of Aircraft 32(4):825-831.https://doi.org/10.2514/3.46797
Postma EO, van den Herik HJ, van der Maaten LJ (2009) Dimensionality reduction:a comparative review.Journal of Machine Learning Research 10(1-41):66-71
Price SJ, Figueira RB (2017) Corrosion protection systems and fatigue corrosion in offshore wind structures:current status and future perspectives.Coatings 7(2):25.https://doi.org/10.3390/coatings 7020025
Ramberg W, Osgood WR (1943) Description of stress-strain curves by three parameters.National Advisory Committee for Aeronautics, Washington DC
Ramos S, Diaz H, Silva D, Guedes Soares C (2021) Levelized cost of energy of offshore floating wind turbines in different case scenarios of the Madeira Islands.Developments in Maritime Technology and Engineering, 627-637
Ray T, Gokarn RP, Sha OP (1996) Neural network applications in naval architecture and marine engineering.Artificial Intelligence in Engineering 10(3):213-226.https://doi.org/10.1016/0954-1810(95) 00030-5
Ricles JM, Bruin WM, Sooi TK, Hebor MF, Schonwetter PC (1995) Residual strength assessment and repair of damaged offshore tubulars.Proceedings of 27th Offshore Technology Conference
Riera-Guasp M, Antonino-Daviu JA, Capolino G-A (2014) Advances in electrical machine, power electronic, and drive condition monitoring and fault detection:state of the art.IEEE Transactions on Industrial Electronics 62(3):1746-1759.https://doi.org/10.1109/TIE.2014.2375853
Rokhlin SI, Kim J-Y, Nagy H, Zoofan B (1999) Effect of pitting corrosion on fatigue crack initiation and fatigue life.Engineering Fracture Mechanics 62(4-5):425-444.https://doi.org/10.1016/S0013-7944(98) 00101-5
Rouhan A, Schoefs F (2003) Probabilistic modeling of inspection results for offshore structures.Structural safety 25(4):379-399.https://doi.org/10.1016/S0167-4730(03) 00016-X
Rubert T, McMillan D, Niewczas P (2018) A decision support tool to assist with lifetime extension of wind turbines.Renewable energy 120:423-433.https://doi.org/10.1016/j.renene.2017.12.064
Rychlik I (1987) A New Definition of the Rainflow Cycle Counting Method.International Journal of Fatigue 9(2):119-121.https://doi.org/10.1016/0142-1123(87) 90054-5
Sadananda K, Vasudevan AK, Holtz RL, Lee EU (1999) Analysis of overload effects and related phenomena.International Journal of Fatigue 21:S233-S246.https://doi.org/10.1016/S0142-1123(99) 00094-8
Santos F, Teixeira A, Guedes Soares C (2015a) Review of wind turbine accident and failure data.Renewable Energies Offshore, 953-959
Santos P, Villa LF, Re?ones A, Bustillo A, Maudes J (2015b) An SVM-based solution for fault detection in wind turbines.Sensors 15(3):5627-5648.https://doi.org/10.3390/s150305627
Schijve J (2001) Fatigue of structures and materials.Kluwer Academic
Schillings C, Wanderer T, Cameron L, van der Wal JT, Jacquemin J, Veum K (2012) A decision support system for assessing offshore wind energy potential in the North Sea.Energy Policy 49:541-551.https://doi.org/10.1016/j.enpol.2012.06.056
Shabakhty N, Boonstra H, van Gelder P (2003) System reliability of jack-up structures based on fatigue degradation.Safety and Reliability, 1437-1445
Shafiee M, Finkelstein M, Bérenguer C (2015) An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks.Reliability Engineering & System Safety 142:463-471.https://doi.org/10.1016/j.ress.2015.05.001
Shi C, Gong Y, Yang Z-G, Tong Q (2019) Peridynamic investigation of stress corrosion cracking in carbon steel pipes.Engineering Fracture Mechanics 219:106604.https://doi.org/10.1016/j.engfracmech.2019.106604
Shittu AA, Mehmanparast A, Shafiee M, Kolios A, Hart P, Pilario K (2020) Structural reliability assessment of offshore wind turbine support structures subjected to pitting corrosion-fatigue:A damage tolerance modelling approach.Wind Energy 23(11):2004-2026.https://doi.org/10.1002/we.2542
Shittu AA, Mehmanparast A, Hart P, Kolios A (2021) Comparative study between SN and fracture mechanics approach on reliability assessment of offshore wind turbine jacket foundations.Reliability Engineering & System Safety 215:107838.https://doi.org/10.1016/j.ress.2021.107838
Silva JE, Garbatov Y, Guedes Soares C (2013) Ultimate strength assessment of rectangular steel plates subjected to a random localised corrosion degradation.Engineering Structures 52:295-305.https://doi.org/10.1016/j.engstruct.2013.02.013
Singha KL, Ranganatha VR (2007) Cycle counting using rainflow algorithm for fatigue analysis.National Seminar on Aerospace Structure, 301-306
Skinn DA, Gallagher JP, Berens AP, Huber PD, Smith J (1994) Damage Tolerant Design (Data) Handbook.Wright Laboratory, Air Force Materiel Command
Smith SW, Newman JA, Piascik RS (2003) Simulation of fatigue crack initiation at corrosion pits with EDM notches, NASA/TM-2003-212166
Soliman M, Frangopol DM, Mondoro A (2016) A probabilistic approach for optimizing inspection, monitoring, and maintenance actions against fatigue of critical ship details.Structural Safety 60:91-101.https://doi.org/10.1016/j.strusafe.2015.12.004
Song S, Li Q, Felder FA, Wang H, Coit DW (2018) Integrated optimization of offshore wind farm layout design and turbine opportunistic condition-based maintenance.Computers & Industrial Engineering 120:288-297.https://doi.org/10.1016/j.cie.2018.04.051
S?rensen JD, Toft HS (2010) Probabilistic design of wind turbines.Energies 3(2):241-257.https://doi.org/10.3390/en3020241
S?rensen JD, Tarp-Johansen NJ (2004) Cost-optimal structural reliability of offshore wind turbines.Special Topic Conference:The Science of Making Torque from Wind, Delft, 593-602
S?rensen JD, Tarp-Johansen NJ (2005) Optimal structural reliability of offshore wind turbines.9th International Conference on Structural Safety and Reliability, ICOSSAR, 1423-1430
S?rensen JD (2012) Reliability-based calibration of fatigue safety factors for offshore wind turbines.International Journal of Offshore and Polar Engineering 22(3):234-241
S?rensen JD (2006) Optimal reliability-based design of offshore wind turbine parks.Proceedings of the 2nd International Forum on Engineering Decision Making conference, Lake Louise, 1-12
S?rensen JD, Rackwitz R, Faber MH, Thoft-Christensen P (1991) Modelling in Optimal Inspection and Repair.International Conference on Offshore Mechanics and Arctic Engineering, Stavenger, 281-288
Stetco A, Dinmohammadi F, Zhao X, Robu V, Flynn D, Barnes M, Keane J, Nenadic G (2019) Machine learning methods for wind turbine condition monitoring:A review.Renewable energy 133:620-635.https://doi.org/10.1016/j.renene.2018.10.047
Straub D, Goyet J, S?rensen JD, Faber MH (2006) Benefits of risk based inspection planning for offshore structures.25th International Conference on Offshore Mechanics and Arctic Engineering, 59-68
Suresh S (1998) Fatigue of materials.Cambridge University Press, 313-342
Thoft-Christensen P, Murotsu Y (1986) Application of structural systems reliability theory.Springer
Th?ns S, Faber MH, Rücker W (2013) Life Cycle Cost Optimized Monitoring Systems for Offshore Wind Turbine Structures.IRIS Industrial Safety and Life Cycle Engineering:Technologies/Standards/Applications, 75-90
Tian Z, Jin T, Wu B, Ding F (2011) Condition based maintenance optimization for wind power generation systems under continuous monitoring.Renewable Energy 36(5):1502-1509.doi:https://doi.org/10.1016/j.renene.2010.10.028
Tunna JM (1986) Fatigue life Prediction for Gaussian Random Loads at the Design Stage.Fatigue and Fracture of Engineering Materials & Structures 9(3):169-184.https://doi.org/10.1111/j.1460-2695.1986.tb00444.x
van der Tempel J, de Vries W (2005) Frequency domain calculations of offshore wind turbine response to wind and wave loads European Offshore Wind Conference & Exhibition
Votsis RA, Michailides C, Tantele EA, Onoufriou T (2018) Review of technologies for monitoring the performance of marine structures.The 28th International Ocean and Polar Engineering Conference, Sapporo
Wallace W, Hoeppner DW, Kandachar PV (1985) AGARD Corrosion Handbook.Volume 1.Aircraft Corrosion:Causes and Case Histories.Advisory group for aerospace research and development neuilly-surseine (France)
Wasim M, Djukic MB (2020) Hydrogen embrittlement of low carbon structural steel at macro-, micro-and nano-levels.International Journal of Hydrogen Energy 45(3):2145-2156.https://doi.org/10.1016/j.ijhydene.2019.11.070
Weijtens W, Noppe N, Verbelen T, Iliopoulos A, Devriendt C (2016) Offshore wind turbine foundation monitoring, extrapolating fatigue measurements from fleet leaders to the entire wind farm.Journal of Physics:Conference Series 753(9):092018.https://doi.org/10.1088/1742-6596/753/9/092018
Wheeler OE (1972) Spectrum Loading and Crack Growth.Journal Basic Engineering 94(D):181.https://doi.org/10.1115/1.3425362
Willenborg J, Engle RM, Wood HA (1971) A Crack Growth Retardation Model Using an Effective Stress Concept.Air Force Flight Dynamic Laboratory, Wright-Patterson Air Force Base, USA
Wirsching PH (1980) Fatigue under wide band random Stress.Journal of Structural Division 98:1593-1606.https://doi.org/10.1061/JSDEAG.0005477
Wu K, Ito K, Shinozaki I, Chivavibul P, Enoki M (2019) A Comparative Study of Localized Corrosion and Stress Corrosion Cracking of 13Cr Martensitic Stainless Steel Using Acoustic Emission and X-ray Computed Tomography.Materials 12(16):2569.https://doi.org/10.3390/ma12162569
Wu K, Jung W-S, Byeon J-W (2016) In-situ monitoring of pitting corrosion on vertically positioned 304 stainless steel by analyzing acoustic-emission energy parameter.Corrosion science 105:8-16.https://doi.org/10.1016/j.corsci.2015.12.010
Yang W, Jiang J (2011) Wind turbine condition monitoring and reliability analysis by SCADA information.Second International Conference on Mechanic Automation and Control Engineering, 1872-1875
Yeh C-H, Lin M-H, Lin C-H, Yu C-E, Chen M-J (2019) Machine learning for long cycle maintenance prediction of wind turbine.Sensors 19(7):1671.https://doi.org/10.3390/s19071671
Yeter B, Garbatov Y (2022) Structural integrity assessment of fixed support structures for offshore wind turbines:A review.Ocean Engineering 244:110271 https://doi.org/10.1016/j.oceaneng.2021.110271
Yeter B, Garbatov Y, Guedes Soares C (2021) Structural health monitoring data analysis for ageing fixed offshore wind turbines structures, OMAE2021-63007.Proceedings of the 40th International Conference on Ocean, Offshore and Arctic Engineering, OMAE21
Yeter B, Garbatov Y, Guedes Soares C (2014a) Spectral fatigue assessment of an offshore wind turbine structure under wave and wind loading.Developments in Maritime Transportation and Exploitation of Sea Resources 1:425-433
Yeter B, Garbatov Y, Guedes Soares C (2014b) Fatigue damage analysis of a fixed offshore wind turbine supporting structure.Developments in Maritime Transportation and Exploitation of Sea Resources 1:415-424
Yeter B, Garbatov Y, Guedes Soares C (2015a) Fatigue damage assessment of fi xed offshore wind turbine tripod support structures.Engineering Structures 101:518-528.https://doi.org/10.1016/j.engstruct.2015.07.038
Yeter B, Garbatov Y, Guedes Soares C (2015b) Low cycle fatigue assessment of offshore wind turbine monopile supporting structure subjected to wave-induced loads.Towards Green Marine Technology and Transport, 287-294
Yeter B, Garbatov Y, Guedes Soares C (2015c) Fatigue crack growth analysis of a plate accounting for retardation effect.The Maritime Technology and Engineering, 585-594
Yeter B, Garbatov Y, Guedes Soares C (2015d) Assessment of the retardation of in-service cracks in offshore welded structures subjected to variable amplitude load.Renewable Energies Offshore, 855-863
Yeter B, Garbatov Y, Guedes Soares C (2015e) Fatigue reliability assessment of an offshore supporting structure.The Maritime Technology and Engineering, 671-680
Yeter B, Garbatov Y, Guedes Soares C (2015f) Fatigue reliability of an offshore wind turbine supporting structure accounting for inspection and repair.Analysis and Design of Marine Structures, 737-347
Yeter B, Garbatov Y, Guedes Soares C (2016a) Evaluation of fatigue damage models predictions for fixed offshore wind turbine support structures.International Journal of Fatigue 87:71-80.https://doi.org/10.1016/j.ijfatigue.2016.01.007
Yeter B, Garbatov Y, Guedes Soares C (2016b) Reliability of Offshore Wind Turbine Support Structures Subjected to Extreme WaveInduced Loads and Defects.Proceedings of the 35th International Conference on Ocean, Offshore and Arctic Engineering, OMAE16, V003T002A060
Yeter B, Garbatov Y, Guedes Soares C (2017a) System reliability of a jacket offshore wind turbine subjected to fatigue.Progress in the Analysis and Design of Marine Structures, 939-950
Yeter B, Garbatov Y, Guedes Soares C (2017b) Risk-based multiobjective optimisation of a monopile offshore wind turbine support structure, OMAE2017-61756.Proceedings of The 36th International Conference on Ocean, Offshore and Arctic Engineering, OMAE17
Yeter B, Garbatov Y, C.GS (2018) Failure assessment of transition piece of jacket offshore wind turbine.Progress in Maritime Technology and Engineering, 359-368
Yeter B, Garbatov Y, Guedes Soares C (2019a) Risk-based life-cycle assessment of offshore wind turbine support structures accounting for economic constraints.Structural Safety 81:101867.https://doi.org/10.1016/j.strusafe.2019.06.001
Yeter B, Garbatov Y, Guedes Soares C (2019b) Ultimate strength assessment of jacket offshore wind turbine support structures subjected to progressive bending loading.Ships and Offshore Structures 14(2):1-11.https://doi.org/10.1080/17445302.2018.1484030
Yeter B, Garbatov Y, Guedes Soares C (2020a) Strength assessment of jacket offshore wind turbine support structure accounting for rupture.Journal of Offshore Mechanics and Arctic Engineering 142(1):011902.https://doi.org/10.1115/1.4044290
Yeter B, Garbatov Y, Guedes Soares C (2020b) Risk-based maintenance planning of offshore wind farms.Reliability Engineering and System Safety 202:107062.https://doi.org/10.1016/j.ress.2020.107062
Yeter B, Garbatov Y (2021) Optimal Life Extension Management of Offshore Wind Farms Based on the Modern Portfolio Theory.Oceans 2(3):566-582.https://doi.org/10.3390/oceans2030032
Yeter B, Garbatov Y, Guedes Soares C (2022a) Life-extension classification of offshore wind assets using unsupervised machine learning.Reliability Engineering & System Safety 219:108229.https://doi.org/10.1016/j.ress.2021.108229
Yeter B, Garbatov Y, Guedes Soares C (2022b) Analysis of Life Extension Performance Metrics for Optimal Management of Offshore Wind Assets.Journal of Offshore Mechanics and Arctic Engineering 144(5).https://doi.org/10.1115/1.4054708
Yeter B, Garbatov Y, Guedes Soares C (2022c) Optimal management of offshore wind assets at different stages of life extension accounting for uncertainty propagation.Proceedings of the 41th International Conference on Ocean, Offshore and Arctic Engineering, OMAE22, Hamburg
Zhang W, Bao Z, Jiang S, He J (2016) An artificial neural networkbased algorithm for evaluation of fatigue crack propagation considering nonlinear damage accumulation.Materials 9(6):483.https://doi.org/10.3390/ma9060483
Zhao W, Baker MJ (1992) On the probability density function of rainfow stress range for statonary gaussian processes.International Journal of Fatigue 14(2):121-135.https://doi.org/10.1016/0142-1123(92) 90088-T
Ziegler L, Gonzalez E, Rubert T, Smolka U, Melero JJ (2018) Lifetime extension of onshore wind turbines:A review covering Germany, Spain, Denmark, and the UK.Renewable and Sustainable Energy Reviews 82:1261-1271.https://doi.org/10.1016/j.rser.2017.09.100
Ziegler L, Schafhirt S, Scheu M, Muskulus M (2016) Effect of load sequence and weather seasonality on fatigue crack growth for monopile-based offshore wind turbines.Energy Procedia 94:115-123.https://doi.org/10.1016/j.egypro.2016.09.204

Memo

Memo:
Received date:2022-05-18;Accepted date:2022-07-18。
Corresponding author:Y. Garbatov,E-mail:yordan.garbatov@tecnico.ulisboa.pt
Last Update: 2023-01-05