|Table of Contents|

Citation:
 Yan Dong,Y. Garbatov,C. Guedes Soares.Recent Developments in Fatigue Assessment of Ships and Offshore Structures[J].Journal of Marine Science and Application,2022,(4):3-25.[doi:10.1007/s11804-022-00301-x]
Click and Copy

Recent Developments in Fatigue Assessment of Ships and Offshore Structures

Info

Title:
Recent Developments in Fatigue Assessment of Ships and Offshore Structures
Author(s):
Yan Dong124 Y. Garbatov34 C. Guedes Soares34
Affilations:
Author(s):
Yan Dong124 Y. Garbatov34 C. Guedes Soares34
1 Yantai Research Institute of Harbin Engineering University, Harbin Engineering University, Yantai, China;
2 College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China;
3 Centre for Marine Technology and Ocean Engineering(CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal;
4 HEU-UL International Joint Laboratory of Naval Architecture and Offshore Technology, Harbin, China
Keywords:
Ships and offshore structures|Fatigue loading|Influencing factors|Fatigue analysis approaches
分类号:
-
DOI:
10.1007/s11804-022-00301-x
Abstract:
A review is provided of various approaches that have been adopted recently to assess the fatigue of ships and offshore structures. The relevant fatigue loading is reviewed first, focusing on the successive loading and unloading of the cargo and the transient loadings. The factors influencing fatigue strength are discussed, including the geometrical parameters, material, residual stress, and ones related to the environment. Different approaches for fatigue analyses of seam-welded joints are covered, i.e., the structural stress or strain approach, the notch stress or strain approach, notch intensity approach, and the crack propagation approach.

References:

Alam M, Barsoum Z, Jonsén P, Kaplan A, H?ggblad H-? (2010) The influence of surface geometry and topography on the fatigue cracking behaviour of laser hybrid welded eccentric fillet joints.Applied Surface Science 256(6):1936-1945.https://doi.org/10.1016/j.apsusc.2009.10.041
Bai Q, Pan J (2017) Pipeline Fatigue and Fracture Design.Encyclopedia of Maritime and Offshore Engineering 1-18.https://doi.org/10.1002/9781118476406.emoe561
Baik B, Yamada K, Ishikawa T (2011) Fatigue crack propagation analysis for welded joint subjected to bending.International Journal of Fatigue 33(5):746-758.https://doi.org/10.1016/j.ijfatigue.2010.12.002
Bao R, Zhang X, Yahaya NA (2010) Evaluating stress intensity factors due to weld residual stresses by the weight function and finite element methods.Engineering Fracture Mechanics 77(13):2550-2566.https://doi.org/10.1016/j.engfracmech.2010.06.002
Barsoum Z, Jonsson B (2011) Influence of weld quality on the fatigue strength in seam welds.Engineering Failure Analysis 18(3):971-979.https://doi.org/10.1016/j.engfailanal.2010.12.001
Beretta S, Bernasconi A, Carboni M (2009) Fatigue assessment of root failures in HSLA steel welded joints:A comparison among local approaches.International Journal of Fatigue 31(1):102-110.https://doi.org/10.1016/j.ijfatigue.2008.05.027
Berto F, Lazzarin P (2009) A review of the volume-based strain energy density approach applied to V-notches and welded structures.Theoretical and Applied Fracture Mechanics 52(3):183-194.https://doi.org/10.1016/j.tafmec.2009.10.001
Berto F, Lazzarin P (2014) Recent developments in brittle and quasibrittle failure assessment of engineering materials by means of local approaches.Materials Science and Engineering:R:Reports 75:1-48.https://doi.org/10.1016/j.mser.2013.11.001
Berto F, Campagnolo A, Chebat F, Cincera M, Santini M (2016) Fatigue strength of steel rollers with failure occurring at the weld root based on the local strain energy values:modelling and fatigue assessment.International Journal of Fatigue 82:643-657.https://doi.org/10.1016/j.ijfatigue.2015.09.023
Berto F, Vinogradov A, Filippi S (2017) Application of the strain energy density approach in comparing different design solutions for improving the fatigue strength of load carrying shear welded joints.International Journal of Fatigue 101:371-384.https://doi.org/10.1016/j.ijfatigue.2016.09.001
BMA (2004) Report of the investigation into the loss of the Bahamian registered tanker ‘Prestige’ off the northwest coast of Spain on 19th November 2002.The Bahamas MaritimeAuthority.
Bowness D, Lee M (2000) Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joints.International Journal of Fatigue 22(5):369-387.https://doi.org/10.1016/S0142-1123(00) 00012-8
Braun M, Milakovi? A-S, Renken F, Fricke W, Ehlers S (2020a) Application of local approaches to the assessment of fatigue test results obtained for welded joints at sub-zero temperatures.International Journal of Fatigue 138:105672.https://doi.org/10.1016/j.ijfatigue.2020.105672
Braun M, Scheffer R, Fricke W, Ehlers S (2020b) Fatigue strength of fillet-welded joints at subzero temperatures.Fatigue & Fracture of Engineering Materials & Structures 43(2):403-416.https://doi.org/10.1111/ffe.13163
Bridges R, Zhang S, Shaposhnikov V (2012) Experimental investigation on the effect of low temperatures on the fatigue strength of welded steel joints.Ships and Offshore Structures 7(3):311-319.https://doi.org/10.1080/17445302.2011.563550
BS 7910 (2013) Guide to methods for assessing the acceptability of flaws in metallic structures.British Standards Institution.
Chakarov K, Garbatov Y, Guedes Soares C (2008a) Fatigue analysis of ship deck structure accounting for imperfections.International Journal of Fatigue 30(10):1881-1897.https://doi.org/10.1016/j.ijfatigue.2008.01.015
Chakarov K, Garbatov Y, Guedes Soares C (2008b) Hot spot stress and stress concentration factors due to different fabrication imperfections in deck structures.International Shipbuilding Progress 55(1-2):47-62.https://doi.org/10.3233/ISP-2008-0038
Chattopadhyay A, Glinka G, El-Zein M, Qian J, Formas R (2011) Stress analysis and fatigue of welded structures.Welding in the World 7(55):2-21.https://doi.org/10.1007/BF03321303
Chen B-Q, Guedes Soares C (2018) A simplified model for the effect of weld-induced residual stresses on the axial ultimate strength of stiffened plates.Journal of Marine Science and Application 17(1):57-67.https://doi.org/10.1007/s11804-018-0007-7
Chen B-Q, Hashemzadeh M, Garbatov Y, Guedes Soares C (2018) Recent Developments in Experimental and Numerical Assessments of Welding-Induced Residual Stresses.International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Madrid.(ASME paper OMAE2018-77652) https://doi.org/10.1115/OMAE2018-77652
Chen N-Z, Wang G, Guedes Soares C (2011) Palmgren-Miner’s rule and fracture mechanics-based inspection planning.Engineering Fracture Mechanics 78(18):3166-3182.https://doi.org/10.1016/j.engfracmech.2011.08.002
Corak M, Parunov J, Guedes Soares C (2015a) Probabilistic load combination factors of wave and whipping bending moments.Journal of Ship Research 59(1):11-30.https://doi.org/10.5957/JOSR.59.1.140052
Corak M, Parunov J, Guedes Soares C (2015b) Long-term prediction of combined wave and whipping bending moments of containership.Ship & Offshore Structures 10(1):4-19.https://doi.org/10.1080/17445302.2013.833022
Corigliano P, Crupi V, Dong P, Fricke W, Guglielmino E (2018) Local Strain Approaches for LCF Life Prediction of Ship Welded Joints.Technology and Science for the Ships of the Future:Proceedings of NAV 2018:19th International Conference on Ship& Maritime Research 166-175.https://doi.org/10.3233/978-1-61499-870-9-166
Croft M, Zhong Z, Jisrawi N, Zakharchenko I, Holtz R, Skaritka J, Fast T, Sadananda K, Lakshmipathy M, Tsakalakos T (2005) Strain profiling of fatigue crack overload effects using energy dispersive X-ray diffraction.International Journal of Fatigue 27(10-12):1408-1419.https://doi.org/10.1016/j.ijfatigue.2005.06.022
Cui W, Huang X, Wang F (2014) Towards a unified fatigue life prediction method for marine structures.Springer.https://doi.org/10.1115/OMAE2010-21007
DNVGL-CG-0153 (2015a) Fatigue and ultimate strength assessment of container ships including whipping and springing.Hovik:Det Norske Veritas.
DNVGL-CG-0129 (2015b) Fatigue Assessment of Ship Structures.Hovik:Det Norske Veritas.
Dong P (2001) Astructural stress definition and numerical implementation for fatigue analysis of welded joints.International Journal of Fatigue 23(10):865-876.https://doi.org/10.1016/S0142-1123(01) 00055-X
Dong P (2005) A robust structural stress method for fatigue analysis of offshore/marine structures.Journal of Offshore Mechanics and Arctic Engineering 127(1):68-74.https://doi.org/10.1115/1.1854698
Dong P, Hong JK, Osage DA, Dewees DJ, Prager M (2010) The Master S-N Curve Method:An Implementation for Fatigue Evaluation of Welded Components in the ASME B&PV Code, Section VIII, Div 2 and API 579-1/ASME FFS-1.Welding Research Council Bulletin.
Dong P, Pei X, Xing S, Kim M (2014) A structural strain method for low-cycle fatigue evaluation of welded components.International Journal of Pressure Vessels and Piping 119:39-51.https://doi.org/10.1016/j.ijpvp.2014.03.003
Dong Y, Guedes Soares C (2015a) On the fatigue crack initiation point of load-carrying fillet welded joints.in:Towards Green Marine Technology and Transport, Guedes Soares C, Dejhalla R,Pavletic D, (Eds.), Taylor & Francis Group, 407-416.https://doi.org/10.1201/b18855-53
Dong Y, Guedes Soares C (2015b) Estimation of effective notch strain for fatigue strength assessment of welded structures under multiaxial stress state.in:Towards Green Marine Technology and Transport, Guedes Soares C, Dejhalla R, Pavletic D, (Eds.), Taylor & Francis Group, 397-406.https://doi.org/10.1201/b18855-52
Dong Y, Garbatov Y, Guedes Soares C (2017) Fatigue strength assessment of an annealed butt welded joint accounting for material inhomogeneity.in:Progress in the Analysis and Design of Marine Structures, Guedes Soares C, Garbatov Y, (Eds.), Taylor& Francis Group, 349-359.https://doi.org/10.1201/9781315157368-40
Dong Y, Guedes Soares C (2017) Uncertainty analysis of local strain and fatigue crack initiation life of welded joints under plane strain condition.in:Progress in the Analysis and Design of Marine Structures, Guedes Soares C, Garbatov Y, (Eds.), Taylor & Francis Group, 337-347.https://doi.org/10.1201/9781315157368-41
Dong Y, Garbatov Y, Guedes Soares C (2018a) A two-phase approach to estimate fatigue crack initiation and propagation lives of notched structural components.International Journal of Fatigue 116:523-534.https://doi.org/10.1016/j.ijfatigue.2018.06.049
Dong Y, Garbatov Y, Guedes Soares C (2018b) Fatigue crack initiation assessment of welded joints accounting for residual stress.Fatigue & Fracture of Engineering Materials & Structures 41(8):1823-1837.https://doi.org/10.1111/ffe.12824
Dong Y, Teixeira AP, Guedes Soares C (2018c) Time-variant fatigue reliability assessment of welded joints based on the PHI2 and response surface methods.Reliability Engineering & System Safety 177:120-130.https://doi.org/10.1016/j.ress.2018.05.005
Dong Y, Guedes Soares C (2019) Stress distribution and fatigue crack propagation analyses in welded joints.Fatigue & Fracture of Engineering Materials & Structures 42(1):69-83.https://doi.org/10.1111/ffe.12871
Dong Y, Teixeira AP, Guedes Soares C (2019) Fatigue reliability analysis of butt welded joints with misalignments based on hotspot stress approach.Marine Structures 65:215-228.https://doi.org/10.1016/j.marstruc.2019.01.006
Dong Y, Garbatov Y, Guedes Soares C (2021a) Fatigue strength assessment of a butt-welded joint in ship structures based on time-domain strain approach.Journal of Ship Research 65(2):123-138.https://doi.org/10.5957/JOSR.04180019
Dong Y, Garbatov Y, Guedes Soares C (2021b) Strain-based fatigue reliability assessment of welded joints in ship structures.Marine Structures 75:102878.https://doi.org/10.1016/j.marstruc.2020.102878
Dong Y, Garbatov Y, Guedes Soares C (2021c) Improved effective notch strain approach for fatigue reliability assessment of loadcarrying fillet welded cruciform joints in low and high cycle fatigue.Marine Structures 75:102849.https://doi.org/10.1016/j.marstruc.2020.102849
Dowling NE (2013) Mechanical behavior of materials:engineering methods for deformation, fracture, and fatigue.Pearson.https://doi.org/10.1016/S0142-1123(96) 00087-4
Eggert L, Fricke W, Paetzold H (2012) Fatigue strength of thinplated block joints with typical shipbuilding imperfections.Welding in the World 56(11-12):119-128.https://doi.org/10.1007/BF03321402
Eufinger J, Heinrietz A, Bruder T, Hanselka H (2013) An engineering approach to fatigue analysis based on elastic-plastic fracture mechanics.Fatigue & Fracture of Engineering Materials & Structures 36(1):65-74.DOI:10.1111/j.1460-2695.2012.01680.x
Farajian M (2013) Welding residual stress behavior under mechanical loading.Welding in the World 57(2):157-169.https://doi.org/10.1007/s40194-013-0024-8
Feng G, Wang Y, Garbatov Y, Ren H, Guedes Soares C (2021) Experimental and numerical analysis of crack growth in stiffened panels.Ships and Offshore Structures 16(9):980-992.https://doi.org/10.1080/17445302.2020.1790297
Ferro P (2014) The local strain energy density approach applied to pre-stressed components subjected to cyclic load.Fatigue & Fracture of Engineering Materials & Structures 37(11):1268-1280.https://doi.org/10.1111/ffe.12211
France E (2019) The Alexander L.Kielland disaster revisited:A review by an experienced welding engineer of the catastrophic north sea platform collapse.Journal of Failure Analysis and Prevention 19(4):875-881.
Fricke W, Paetzold H, Zipfel B (2009) Fatigue tests and numerical analyses of a connection of steel sandwich plates.Welding in the World 53(7):R151-R157.https://doi.org/10.1007/BF03266726
Fricke W, Feltz MO (2010) Fatigue tests and numerical analyses of partial-load and full-load carrying fillet welds at cover plates and lap joints.Welding in the World 54(7-8):R225-R233.https://doi.org/10.1007/BF03263508
Fricke W (2012) IIW recommendations for the fatigue assessment of welded structures by notch stress analysis:IIW-2006-09.Woodhead Publishing.DOI:10.1533/9780857098566
Fricke W, von Lilienfeld-Toal A, Paetzold H (2012) Fatigue strength investigations of welded details of stiffened plate structures in steel ships.International Journal of Fatigue 34(1):17-26.https://doi.org/10.1016/j.ijfatigue.2011.01.021
Fricke W (2013) IIW guideline for the assessment of weld root fatigue.Welding in the World 57(6):753-791.DOI:10.1007/s40194-013-0066-y
Fricke W, Feltz O (2013) Consideration of influence factors between small-scale specimens and large components on the fatigue strength of thin-plated block joints in shipbuilding.Fatigue & Fracture of Engineering Materials & Structures 36(12):1223-1231.https://doi.org/10.1111/ffe.12058
Fricke W, Friedrich N, Musumeci L, Paetzold H (2014) Low-cycle fatigue analysis of a web frame corner in ship structures.Welding in the World 58(3):319-327.https://doi.org/10.1007/s40194-014-0117-z
Fricke W, Paetzold H (2014) Effect of whipping stresses on the fatigue damage of ship structures.Welding in the World 58(2):261-268.https://doi.org/10.1007/s40194-014-0111-5
Fricke W, Remes H, Feltz O, Lillem?e I, Tchuindjang D, Reinert T, Nevierov A, Sichermann W, Brinkmann M, Kontkanen T (2015) Fatigue strength of laser-welded thin-plate ship structures based on nominal and structural hot-spot stress approach.Ships and Offshore Structures 10(1):39-44.https://doi.org/10.1080/17445302.2013.850208
Fricke W (2017) Fatigue and fracture of ship structures.in:Encyclopedia of Maritime and Offshore Engineering, (Eds.), Wiley.https://doi.org/10.1002/9781118476406.emoe007
Garbatov Y, Rudan S, Guedes Soares C (2004) Assessment of geometry correction functions of tanker knuckle details based on fatigue tests and finite-element analysis.Journal of Offshore Mechanics Arctic Engineering 126(3):220-226.https://doi.org/10.1115/1.1782643
Garbatov Y, Santos J, Guedes Soares C (2005a) Effect of truck induced load on welded structural joints subjected to fatigue.in:Maritime transportation and exploitation of ocean and coastal resources, Guedes Soares C, Garbatov Y, Fonseca N, (Eds.), Taylor & Francis Group, London, UK, 413-422.https://doi.org/10.1201/9781439833728.ch49
Garbatov Y, Tomasevic S, Guedes Soares C (2005b) Fatigue damage assessment of a newly built FPSO hull.in:Maritime transportation and exploitation of ocean and coastal resources, Guedes Soares C, Garbatov Y, Fonseca N, (Eds.), Taylor & Francis Group, London, UK, 423-428.https://doi.org/10.1201/9781439833728.ch50
Garbatov Y, Rudan S, Guedes Soares C (2010) Fatigue assessment of welded trapezoidal joints of a very fast ferry subjected to combined load.Engineering Structures, 32(3), 800-807.https://doi.org/10.1016/j.engstruct.2009.12.007
Glinka G (1985) Energy density approach to calculation of inelastic strain-stress near notches and cracks.Engineering Fracture Mechanics 22(3):485-508.https://doi.org/10.1016/0013-7944(85) 90148-1
Goyal R, Glinka G (2013) Fracture mechanics-based estimation of fatigue lives of welded joints.Welding in the World 57(5):625-634.https://doi.org/10.1016/j.engfailanal.2018.07.017
Goyal R, El-Zein M, Glinka G (2016) A robust stress analysis method for fatigue life prediction of welded structures.Welding in the World 2(60):299-314.DOI:10.1007/s40194-016-0295-y
Guedes Soares C (1990) Stochastic Models of Load Effects for the Primary Ship Structure.Structural Safety 8(1-4):353-368.https://doi.org/10.1016/0167-4730(90) 90052-Q
Guedes Soares C, Moan T (1988).Statistical analysis of stillwater load effects in ship structures.Transaction of the Society of Naval Architects and Marine Engineers 96(4):129-156.
Guedes Soares C, Moan T (1991) Model Uncertainty in the Long Term Distribution of Wave Induced Bending Moments for Fatigue Design of Ship Structures.Marine Structures.4295-315.https://doi.org/10.1016/0951-8339(91) 90008-Y
Guedes Soares C, Garbatov Y, Von Selle H (2003) Fatigue damage assessment of ship structures based on the long-term distribution of local stresses.International Shipbuilding Progress 50(1, 2):35-55.
Hanji T, Saiprasertkit K, Miki C (2011) Low-and high-cycle fatigue behavior of load-carrying cruciform joints with incomplete penetration and strength under-match.International Journal of Steel Structures 11(4):409-425.https://doi.org/10.1007/s13296-011-4002-y
He X, Guedes Soares C (2021a) Experimental study on the dynamic behavior of beams under repeated impacts.International Journal of Impact Engineering 147:103724.https://doi.org/10.1016/j.ijimpeng.2020.103724
He X, Guedes Soares C (2021b) Numerical study on the pseudoshakedown of beams under repeated impacts.Ocean Engineering 242:110137.https://doi.org/10.1016/j.oceaneng.2021.110137
Hensel J, Nitschke-Pagel T, Tchoffo Ngoula D, Beier H-T, Tchuindjang D, Zerbst U (2018) Welding residual stresses as needed for the prediction of fatigue crack propagation and fatigue strength.Engineering Fracture Mechanics 198:123-141.https://doi.org/10.1016/j.engfracmech.2017.10.024
Hobbacher A (2015) Recommendations for fatigue design of welded joints and components.Springer.https://doi.org/10.1007/978-3-319-23757-2
Hoh HJ, Pang JHL, Tsang KS (2016) Stress intensity factors for fatigue analysis of weld toe cracks in a girth-welded pipe.International Journal of Fatigue 87:279-287.https://doi.org/10.1016/j.ijfatigue.2016.02.002
Horn AM, Lotsberg I, Orjaseater O (2018) The rationale for update of SN curves for single sided girth welds for risers and pipelines in DNV GL RP C-203 based on fatigue performance of more than 1700 full scale fatigue test results.International Conference on Ocean, Offshore and Arctic Engineering (OMAE), Madrid.(ASME paper OMAE2018-78408) https://doi.org/10.1115/OMAE2018-78408
Hou C-Y (2007) Fatigue analysis of welded joints with the aid of real three-dimensional weld toe geometry.International Journal of Fatigue 29(4):772-785.https://doi.org/10.1016/j.ijfatigue.2006.06.007
Huang X, Moan T (2007) Improved modeling of the effect of R-ratio on crack growth rate.International Journal of Fatigue 29(4):591-602.https://doi.org/10.1016/j.ijfatigue.2006.07.014
Huang X, Torgeir M, Cui W (2008) An engineering model of fatigue crack growth under variable amplitude loading.International Journal of Fatigue 30(1):2-10.https://doi.org/10.1016/j.ijfatigue.2007.03.004
Huta? P, Podu?ka J, ?míd M, Kuběna I, Chlupová A, Náhlík L, Polák J, Kruml T (2017) Short fatigue crack behaviour under low cycle fatigue regime.International Journal of Fatigue 103:207-215.https://doi.org/10.1016/j.ijfatigue.2017.06.002
ISO 5817 (2014) Welding-Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded)-Quality levels for imperfections.
Jonsson B, Samuelsson J, Marquis GB (2011) Development of weld quality criteria based on fatigue performance.Welding in the World 55(11-12):79-88.https://doi.org/10.1007/BF03321545
Jonsson B, Dobmann G, Hobbacher A, Kassner M, Marquis G (2016) IIW guidelines on weld quality in relationship to fatigue strength.Springer.https://doi.org/10.1007/978-3-319-19198-0
Kamaya M (2015) Low-cycle fatigue crack growth prediction by strain intensity factor.International Journal of Fatigue 72:80-89.https://doi.org/10.1016/j.ijfatigue.2014.11.002
Kucharczyk P, Madia M, Zerbst U, Schork B, Gerwien P, Münstermann S (2018) Fracture-mechanics based prediction of the fatigue strength of weldments.Material aspects.Engineering Fracture Mechanics 198:79-102.https://doi.org/10.1016/j.engfracmech.2017.09.010
Ladinek M, Niederwanger A, Lang R, Schmid J, Timmers R, Lener G (2018) The strain-life approach applied to welded joints:Considering the real weld geometry.Journal of Constructional Steel Research 148:180-188.https://doi.org/10.1016/j.jcsr.2018.04.024
Lawrence F, Ho N, Mazumdar PK (1981) Predicting the fatigue resistance of welds.Annual Review of Materials Science 11(1):401-425.https://doi.org/10.1146/annurev.ms.11.080181.002153
Lazzarin P, Tovo R (1998) A notch intensity factor approach to the stress analysis of welds.Fatigue & Fracture of Engineering Materials & Structures 21(9):1089-1103.https://doi.org/10.1046/j.1460-2695.1998.00097.x
Lazzarin P, Livieri P (2001) Notch stress intensity factors and fatigue strength of aluminium and steel welded joints.International Journal of Fatigue 23(3):225-232.https://doi.org/10.1016/S0142-1123(00) 00086-4
Lazzarin P, Lassen T, Livieri P (2003) A notch stress intensity approach applied to fatigue life predictions of welded joints with different local toe geometry.Fatigue & Fracture of Engineering Materials & Structures 26(1):49-58.https://doi.org/10.1046/j.1460-2695.2003.00586.x
Lazzarin P, Berto F, Zappalorto M (2010) Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes:Theoretical bases and applications.International Journal of Fatigue 32(10):1559-1567.https://doi.org/10.1016/j.ijfatigue.2010.02.017
Lazzarin P, Campagnolo A, Berto F (2014) A comparison among some recent energy-and stress-based criteria for the fracture assessment of sharp V-notched components under Mode I loading.Theoretical and Applied Fracture Mechanics 71:21-30.https://doi.org/10.1016/j.tafmec.2014.03.001
Lee CH, Chang KH, Jang GC, Lee CY (2009) Effect of weld geometry on the fatigue life of non-load-carrying fillet welded cruciform joints.Engineering Failure Analysis 16(3):849-855.https://doi.org/10.1016/j.engfailanal.2008.07.004
Li Z, Jiang X, Hopman H, Zhu L, Liu Z (2020) An investigation on the circumferential surface crack growth in steel pipes subjected to fatigue bending.Theoretical and Applied Fracture Mechanics 105:102403.https://doi.org/10.1016/j.tafmec.2019.102403
Lie S, Vipin S, Li T (2015) New weld toe magnification factors for semi-elliptical cracks in double-sided T-butt joints and cruciform X-joints.International Journal of Fatigue 80:178-191.https://doi.org/10.1016/j.ijfatigue.2015.05.016
Lie S, Zhao H, Vipin S (2017) New weld toe magnification factors for semi-elliptical cracks in plate-to-plate butt-welded joints.Fatigue & Fracture of Engineering Materials & Structures 40(2):207-220.DOI:10.1111/ffe.12485
Liinalampi S, Remes H, Lehto P, Lillem?e I, Romanoff J, Porter D (2016) Fatigue strength analysis of laser-hybrid welds in thin plate considering weld geometry in microscale.International Journal of Fatigue 87:143-152.DOI:10.1016/j.ijfatigue.2016.01.019
Liljedahl C, Tan M, Zanellato O, Ganguly S, Fitzpatrick M, Edwards L (2008) Evolution of residual stresses with fatigue loading and subsequent crack growth in a welded aluminium alloy middle tension specimen.Engineering Fracture Mechanics 75(13):3881-3894.https://doi.org/10.1016/j.engfracmech.2008.02.005
Liljedahl C, Brouard J, Zanellato O, Lin J, Tan M, Ganguly S, Irving PE, Fitzpatrick M, Zhang X, Edwards L (2009) Weld residual stress effects on fatigue crack growth behaviour of aluminium alloy 2024-T351.International Journal of Fatigue 31(6):1081-1088.https://doi.org/10.1016/j.ijfatigue.2008.05.008
Liljedahl C, Zanellato O, Fitzpatrick M, Lin J, Edwards L (2010) The effect of weld residual stresses and their re-distribution with crack growth during fatigue under constant amplitude loading.International Journal of Fatigue 32(4):735-743.https://doi.org/10.1016/j.ijfatigue.2009.10.012
Lillem?e I, Lammi H, Molter L, Remes H (2012) Fatigue strength of welded butt joints in thin and slender specimens.International Journal of Fatigue 44:98-106.https://doi.org/10.1016/j.ijfatigue.2012.05.009
Lillem?e I, Remes H, Romanoff J (2013) Influence of initial distortion on the structural stress in 3mm thick stiffened panels.Thin-Walled Structures 72:121-127.DOI:10.1016/j.tws.2013.07.001
Lillem?e I, Remes H, Romanoff J (2014) Influence of initial distortion of 3 mm thin superstructure decks on hull girder response for fatigue assessment.Marine Structures 37:203-218.https://doi.org/10.1016/j.marstruc.2014.04.001
Lillem?e I, Liinalampi S, Remes H, It?vuo A, Niemel? A (2017a) Fatigue strength of thin laser-hybrid welded full-scale deck structure.International Journal of Fatigue 95:282-292.https://doi.org/10.1016/j.ijfatigue.2016.11.012
Lillem?e I, Remes H, Dong Y, Garbatov Y, Quemener Y, Eggert L, Sheng Q, Yue J (2017b) Benchmark study on considering welding-induced distortion in structural stress analysis of thinplate structures.in:Progress in the Analysis and Design of Marine Structures, Guedes Soares C, Garbatov Y, (Eds.), Taylor & Francis Group, 387-394.https://doi.org/10.1201/9781315157368-45
Liu B, Villavicencio R, Pedersen PT, Guedes Soares C (2021) Analysis of structural crashworthiness of double-hull ships in collision and grounding.Marine Structures 76:102898.https://doi.org/10.1016/j.marstruc.2020.102898
Liu Y, Mahadevan S (2009) Probabilistic fatigue life prediction using an equivalent initial flaw size distribution.International Journal of Fatigue 31(3):476-487.https://doi.org/10.1016/j.ijfatigue.2008.06.005
Lopez Z, Fatemi A (2012) A method of predicting cyclic stress-strain curve from tensile properties for steels.Materials Science and Engineering:A 556:540-550.https://doi.org/10.1016/j.msea.2012.07.024
Lotsberg I (2016) Fatigue design of marine structures.Cambridge University Press.https://doi.org/10.1017/CBO9781316343982
Maddox S (1974) Assessing the significance of flaws in welds subject to fatigue.Welding Journal 53(9):401-410.
Maddox SJ (1991) Fatigue strength of welded structures.Woodhead publishing.
Madia M, Zerbst U, Beier HT, Schork B (2018) The IBESS modelElements, realisation and validation.Engineering Fracture Mechanics 198:171-208.https://doi.org/10.1016/j.engfracmech.2017.08.033
Mahmoud HN, Dexter RJ (2005) Propagation rate of large cracks in stiffened panels under tension loading.Marine Structures 18(3):265-288.https://doi.org/10.1016/j.marstruc.2005.09.001
Manai A, Polach R, Al-Emrani M (2020) A probabilistic study of welding residual stresses distribution and their contribution to the fatigue life.Engineering Failure Analysis 118:104787.https://doi.org/10.1016/j.engfailanal.2020.104787
Mancini F, Remes H, Romanoff J, Goncalves BR (2020) Stress magnification factor for angular misalignment between plates with welding-induced curvature.Welding in the World 64(4):729-751.https://doi.org/10.1007/s40194-020-00866-7
McClung R (2007) A literature survey on the stability and significance of residual stresses during fatigue.Fatigue & Fracture of Engineering Materials & Structures 30(3):173-205.https://doi.org/10.1111/j.1460-2695.2007.01102.x
Meneghetti G, Lazzarin P (2007) Significance of the elastic peak stress evaluated by FE analyses at the point of singularity of sharp V-notched components.Fatigue & Fracture of Engineering Materials & Structures 30(2):95-106.https://doi.org/10.1111/j.1460-2695.2006.01084.x
Meneghetti G, Campagnolo A, Berto F (2015) Fatigue strength assessment of partial and full-penetration steel and aluminium butt-welded joints according to the peak stress method.Fatigue& Fracture of Engineering Materials & Structures 38(12):1419-1431.https://doi.org/10.1111/ffe.12342
Meneghetti G, De Marchi A, Campagnolo A (2016) Assessment of root failures in tube-to-flange steel welded joints under torsional loading according to the Peak Stress Method.Theoretical and Applied Fracture Mechanics 83:19-30.https://doi.org/10.1016/j.tafmec.2016.01.013
Meneghetti G, Campagnolo A, Avalle M, Castagnetti D, Colussi M, Corigliano P, De Agostinis M, Dragoni E, Fontanari V, Frendo F (2018) Rapid evaluation of notch stress intensity factors using the peak stress method:Comparison of commercial finite element codes for a range of mesh patterns.Fatigue & Fracture of Engineering Materials & Structures 41(5):1044-1063.https://doi.org/10.1111/ffe.12751
Meneghetti G, Campagnolo A (2020) State-of-the-art review of peak stress method for fatigue strength assessment of welded joints.International Journal of Fatigue 139:105705.https://doi.org/10.1016/j.ijfatigue.2020.105705
Mikheevskiy S, Bogdanov S, Glinka G (2015) Analysis of fatigue crack growth under spectrum loading-The UniGrow fatigue crack growth model.Theoretical and Applied Fracture Mechanics 79:25-33.https://doi.org/10.1016/j.tafmec.2015.06.010
Mikulski Z, Lassen T (2019) Fatigue crack initiation and subsequent crack growth in fillet welded steel joints.International Journal of Fatigue 120:303-318.https://doi.org/10.1016/j.ijfatigue.2018.11.014
Moan T (1985) The progressive structural failure of the Alexander L.Kielland platform.in:Case Histories in Offshore Engineering, Maier G, (Eds.), Springer, 1-42.https://doi.org/10.1007/978-3-7091-2742-1_1
Murakami Y, Miller K (2005) What is fatigue damage? A view point from the observation of low cycle fatigue process.International Journal of Fatigue 27(8):991-1005.https://doi.org/10.1016/j.ijfatigue.2004.10.009
Navarro C, Vázquez J, Domínguez J (2011) A general model to estimate life in notches and fretting fatigue.Engineering Fracture Mechanics 78(8):1590-1601.https://doi.org/10.1016/j.engfracmech.2011.01.011
Navarro C, Vázquez J, Domínguez J (2014) 3D vs.2D fatigue crack initiation and propagation in notched plates.International Journal of Fatigue 58:40-46.https://doi.org/10.1016/j.ijfatigue.2013.02.024
Newman J, Raju I (1981) An empirical stress-intensity factor equation for the surface crack.Engineering Fracture Mechanics 15(1-2):185-192.https://doi.org/10.1016/0013-7944(81) 90116-8
Newman Jr J, Raju I (1986) Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads.Computational Methods in the Mechanics of Fracture 2:311-334.https://doi.org/10.1520/stp37074s
Ngoula DT, Beier HT, Vormwald M (2017) Fatigue crack growth in cruciform welded joints:Influence of residual stresses and of the weld toe geometry.International Journal of Fatigue 101:253-262.https://doi.org/10.1016/j.ijfatigue.2016.09.020
Nguyen KT, Garbatov Y, Guedes Soares C (2012) Fatigue damage assessment of corroded oil tanker details based on global and local stress approaches.International Journal of Fatigue 43:197-206.https://doi.org/10.1016/j.ijfatigue.2012.04.004
Nguyen KT, Garbatov Y, Guedes Soares C (2013) Spectral fatigue damage assessment of tanker deck structural detail subjected to time-dependent corrosion.International Journal of Fatigue 48:147-155.https://doi.org/10.1016/j.ijfatigue.2012.10.014
Noroozi A, Glinka G, Lambert S (2005) A two parameter driving force for fatigue crack growth analysis.International Journal of Fatigue 27(10):1277-1296.https://doi.org/10.1016/j.ijfatigue.2005.07.002
Noroozi A, Glinka G, Lambert S (2007) A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force.International Journal of Fatigue 29(9-11):1616-1633.https://doi.org/10.1016/j.ijfatigue.2006.12.008
Otegui J, Kerr H, Burns D, Mohaupt U (1989) Fatigue crack initiation from defects at weld toes in steel.International Journal of Pressure Vessels and Piping 38(5):385-417.https://doi.org/10.1016/0308-0161(89) 90048-3
Parunov J, Gledi? I, Garbatov YY, Guedes Soares C (2013) Fatigue assessment of corroded deck longitudinals of tankers.International Journal of Maritime Engineering 155(PART A):A9-A21.https://doi.org/10.5750/ijme.v155iA1.892
Pedersen PT (2015) Marine structures:future trends and the role of universities.Engineering 1(1):131-138.https://doi.org/10.15302/J-ENG-2015004
Pei X, Dong P (2019) An analytically formulated structural strain method for fatigue evaluation of welded components incorporating nonlinear hardening effects.Fatigue & Fracture of Engineering Materials & Structures 42(1):239-255.https://doi.org/10.1111/ffe.12900
Pei X, Dong P, Xing S (2019) A structural strain parameter for a unified treatment of fatigue behaviors of welded components.International Journal of Fatigue 124:444-460.https://doi.org/10.1016/j.ijfatigue.2019.03.010
Peng Y, Wu C, Zheng Y, Dong J (2017) Improved Formula for the Stress Intensity Factor of Semi-Elliptical Surface Cracks in Welded Joints under Bending Stress.Materials 10(2):166.https://doi.org/10.3390/ma10020166
Pinheiro, B.; Guedes Soares, C., and Pasqualino, I.P.(2019) Generalized expressions for stress concentration factors of pipeline plain dents under cyclic internal pressure.International Journal of Pressure Vessels and Piping:17082-91.https://doi.org/10.1016/j.ijpvp.2019.01.015
Pippan R, Hohenwarter A (2017) Fatigue crack closure:a review of the physical phenomena.Fatigue & Fracture of Engineering Materials & Structures 40(4):471-495.https://doi.org/10.1111/ffe.12578
Radaj D, Sonsino C, Flade D (1998) Prediction of service fatigue strength of a welded tubular joint on the basis of the notch strain approach.International Journal of Fatigue 20(6):471-480.https://doi.org/10.1016/S0142-1123(98) 00012-7
Radaj D, Sonsino CM, Fricke W (2006) Fatigue assessment of welded joints by local approaches.Woodhead publishing.
Radaj D, Lazzarin P, Berto F (2009) Fatigue assessment of welded joints under slit-parallel loading based on strain energy density or notch rounding.International Journal of Fatigue 31(10):1490-1504.https://doi.org/10.1016/j.ijfatigue.2009.05.005
Rajendran S, Guedes Soares C (2016) Numerical investigation of the vertical response of a containership in large amplitude waves.Ocean Engineering:123440-451.https://doi.org/10.1016/j.oceaneng.2016.06.039
Rajendran S, Vasquez G, Guedes Soares C (2016) Effect of bow flare on the vertical ship responses in abnormal waves and extreme seas.Ocean Engineering:124419-436.https://doi.org/10.1016/j.oceaneng.2016.07.020
Remes H (2008) Strain-based approach to fatigue strength assessment of laser-welded joints.Ph.D thesis, Helsinki University of Technology.
Remes H, Varsta P, Romanoff J (2012) Continuum approach to fatigue crack initiation and propagation in welded steel joints.International Journal of Fatigue 40:16-26.https://doi.org/10.1016/j.ijfatigue.2012.01.007
Remes H (2013) Strain-based approach to fatigue crack initiation and propagation in welded steel joints with arbitrary notch shape.International Journal of Fatigue 52:114-123.https://doi.org/10.1016/j.ijfatigue.2013.03.006
Remes H, Fricke W (2014) Influencing factors on fatigue strength of welded thin plates based on structural stress assessment.Welding in the World 58(6):915-923.https://doi.org/10.1007/s40194-014-0170-7
Roessle M, Fatemi A (2000) Strain-controlled fatigue properties of steels and some simple approximations.International Journal of Fatigue 22(6):495-511.DOI:10.1016/S0142-1123(00) 00026-8
Saiprasertkit K, Hanji T, Miki C (2012a) Local strain estimation method for low-and high-cycle fatigue strength evaluation.International Journal of Fatigue 40:1-6.https://doi.org/10.1016/j.ijfatigue.2012.01.021
Saiprasertkit K, Hanji T, Miki C (2012b) Fatigue strength assessment of load-carrying cruciform joints with material mismatching in low-and high-cycle fatigue regions based on the effective notch concept.International Journal of Fatigue 40:120-128.https://doi.org/10.1016/j.ijfatigue.2011.12.016
Saiprasertkit K, Sasaki E, Miki C (2014) Fatigue crack initiation point of load carrying cruciform joints in low and high cycle fatigue regions.International Journal of Fatigue 59:153-158.https://doi.org/10.1016/j.ijfatigue.2013.09.002
Schiaretti M, Cai J, Jiang X, Zhang S, Schott D (2021) A Numerical Investigation of an Abnormal Phenomenon of Stress Intensity Factor (SIF) in a Cracked T-Butt Joint Accounting for Welding Effect.Journal of Marine Science and Application 20:343-353.https://doi.org/10.1007/s11804-021-00199-x
Schork B, Kucharczyk P, Madia M, Zerbst U, Hensel J, Bernhard J, Tchuindjang D, Kaffenberger M, Oechsner M (2018) The effect of the local and global weld geometry as well as material defects on crack initiation and fatigue strength.Engineering Fracture Mechanics 198:103-122.https://doi.org/10.1016/j.engfracmech.2017.07.001
Schweizer C, Seifert T, Nieweg B, Von Hartrott P, Riedel H (2011) Mechanisms and modelling of fatigue crack growth under combined low and high cycle fatigue loading.International Journal of Fatigue 33(2):194-202.https://doi.org/10.1016/j.ijfatigue.2010.08.008
Sharpe W, Yang C, Tregoning R (1992) An evaluation of the Neuber and Glinka relations for monotonic loading.Journal of Applied Mechanics 59(2S):S50-S56.https://doi.org/10.1115/1.2899507
Shen G, Glinka G (1991) Weight functions for a surface semielliptical crack in a finite thickness plate.Theoretical and Applied Fracture Mechanics 15(3):247-255.https://doi.org/10.1016/0167-8442(91) 90023-D
Shen W, Qiu Y, Li X, Han X, Berto F, Hu D (2021) Stress magnification effect of initial deformation on the notch stress field and fatigue strength of thin plate welded joints.Marine Structures 78:102999.https://doi.org/10.1016/j.marstruc.2021.102999
Shiozaki T, Yamaguchi N, Tamai Y, Hiramoto J, Ogawa K (2018) Effect of weld toe geometry on fatigue life of lap fillet welded ultra-high strength steel joints.International Journal of Fatigue 116:409-420.https://doi.org/10.1016/j.ijfatigue.2018.06.050
Song W, Liu X, Berto F, Wang P, Fang H (2017) Fatigue failure transition analysis in load-carrying cruciform welded joints based on strain energy density approach.Fatigue & Fracture of Engineering Materials & Structures 40(7):1164-1177.https://doi.org/10.1111/ffe.12588
Song W, Liu X, Zhou G, Wei S, Shi D, He M, Berto F (2021) Notch energy-based low and high cycle fatigue assessment of loadcarrying cruciform welded joints considering the strength mismatch.International Journal of Fatigue:106410.https://doi.org/10.1016/j.ijfatigue.2021.106410
Sonsino C (2009) Effect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometry.International Journal of Fatigue 31(1):88-101.https://doi.org/10.1016/j.ijfatigue.2008.02.015
Sonsino C, Fricke W, De Bruyne F, Hoppe A, Ahmadi A, Zhang G (2012) Notch stress concepts for the fatigue assessment of welded joints-Background and applications.International Journal of Fatigue 34(1):2-16.https://doi.org/10.1016/j.ijfatigue.2010.04.011
Sonsino CM, Bruder T, Baumgartner J (2010) SN lines for welded thin joints-suggested slopes and FAT values for applying the notch stress concept with various reference radii.Welding in the World 54(11):R375-R392.https://doi.org/10.1007/BF03266752
Storhaug G (2014) The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels.International Journal of Naval Architecture and Ocean Engineering 6(4):1096-1110.DOI:10.2478/IJNAOE-2013-0233
Tsang KS, Pang JH, Hoh HJ (2018) Influence of Weld Toe Radii on Fatigue Life Prediction.MATEC Web of Conferences https://doi.org/10.1051/matecconf/201816522025
Volvo Standard STD 181-0004 (2008) Fusion welding weld classes and requirements.
Wang R, Shang D (2009) Low-cycle fatigue life prediction of spot welds based on hardness distribution and finite element analysis.International Journal of Fatigue 31(3):508-514.https://doi.org/10.1016/j.ijfatigue.2008.04.009
Wang S, Guedes Soares C (2017) Review of ship slamming loads and responses.Journal of Marine Science and Application 16(4):427-445.https://doi.org/10.1007/s11804-017-1437-3
Wang Y, Liu J, Hu J, Garbatov Y, Guedes Soares C (2021) Fatigue strength of EH36 steel welded joints and base material at lowtemperature.International Journal of Fatigue 142:105896.https://doi.org/10.1016/j.ijfatigue.2020.105896
Wang Y, Wu W, Guedes Soares C (2020) Experimental and numerical study of the hydroelastic response of a River-SeaGoing container ship.Journal of Marine Science and Engineering 8(12):978.https://doi.org/10.3390/jmse8120978
Xiao Z, Chen T, Zhao X (2012) Fatigue strength evaluation of transverse fillet welded joints subjected to bending loads.International Journal of Fatigue 38:57-64.https://doi.org/10.1016/j.ijfatigue.2011.11.013
Xing S, Dong P, Threstha A (2016) Analysis of fatigue failure mode transition in load-carrying fillet-welded connections.Marine Structures 46:102-126.https://doi.org/10.1016/j.marstruc.2016.01.001
Xing S, Dong P, Wang P (2017) A quantitative weld sizing criterion for fatigue design of load-carrying fillet-welded connections.International Journal of Fatigue 101:448-458.https://doi.org/10.1016/j.ijfatigue.2017.01.003
Yeter B, Garbatov Y, Guedes Soares C (2015) Fatigue damage assessment of fixed offshore wind turbine tripod support structures.Engineering Structures 101:518-528.https://doi.org/10.1016/j.engstruct.2015.07.038
Yeter B, Garbatov Y, Guedes Soares C (2016) Evaluation of fatigue damage model predictions for fixed offshore wind turbine support structures.International Journal of Fatigue 87:71-80.https://doi.org/10.1016/j.ijfatigue.2016.01.007
Yuan K, Sumi Y (2016) Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic impact treatment (UIT).International Journal of Fatigue 92:321-332.https://doi.org/10.1016/j.ijfatigue.2016.07.018
Yue J, Dang Z, Guedes Soares C (2017) Prediction of fatigue crack propagation in bulb stiffeners by experimental and numerical methods.International Journal of Fatigue 99:101-110.https://doi.org/10.1016/j.ijfatigue.2017.02.022
Yue J, Dong Y, Guedes Soares C (2018) An experimental-finite element method based on beach marks to determine fatigue crack growth rate in thick plates with varying stress states.Engineering Fracture Mechanics 196:123-141.https://doi.org/10.1016/j.engfracmech.2018.04.015
Zerbst U, Ainsworth R, Beier HT, Pisarski H, Zhang Z, Nikbin K, Nitschke-Pagel T, Münstermann S, Kucharczyk P, Klingbeil D (2014) Review on fracture and crack propagation in weldments-A fracture mechanics perspective.Engineering Fracture Mechanics 132:200-276.https://doi.org/10.1016/j.engfracmech.2014.05.012
Zerbst U, Madia M (2015) Fracture mechanics based assessment of the fatigue strength:approach for the determination of the initial crack size.Fatigue & Fracture of Engineering Materials & Structures 38(9):1066-1075.https://doi.org/10.1111/ffe.12288
Zhang S, Bridges R, Tong J (2011) Fatigue design assessment of ship structures induced by ice loading-an introduction to the ShipRight FDA ICE procedure.Proceeding of the Twenty-first International Offshore and Polar Engineering Conference, Maui, Hawaii.(ISOPEI-11-546)
Zhang Y-H, Maddox S (2014) Fatigue testing of full scale girth welded pipes under variable amplitude loading.Journal of Offshore Mechanics and Arctic Engineering 136(2).https://doi.org/10.1115/OMAE2012-83054
Zhao HS, Lie S, Zhang Y (2017) Stress intensity factors for semielliptical surface cracks in plate-to-plate butt welds with parallel misalignment of same thickness.Marine Structures 53:148-163.https://doi.org/10.1016/j.marstruc.2017.02.005
Zhao W, Feng G, Zhang M, Ren H, Sinsabvarodom C (2020) Effect of low temperature on fatigue crack propagation rates of DH36 steel and its butt weld.Ocean Engineering 196:106803.https://doi.org/10.1016/j.oceaneng.2019.106803
Zhou W, Dong P, Lillemae I, Remes H (2019) A 2nd-order SCF solution for modeling distortion effects on fatigue of lightweight structures.Welding in the World 63(6):1695-1705.https://doi.org/10.1007/s40194-019-00772-7
Zwick D, Muskulus M (2016) Simplified fatigue load assessment in offshore wind turbine structural analysis.Wind Energy 19(2):265-278.https://doi.org/10.1002/we.1831

Memo

Memo:
Received date:2022-01-12;Accepted date:2022-06-12。
Corresponding author:Yan Dong,E-mail:yan.dong@hrbeu.edu.cn
Last Update: 2023-01-05