Alessi L, Correia J, Fantuzzi N (2019) Initial design phase and tender designs of a jacket structure converted into a retrofitted offshore wind turbine. Energies 12(4):1-28
Areias P, Belytschko T (2005a) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63(5):760-788
Areias P, Belytschko T (2005b) Non-linear analysis of shells with arbitrary evolving cracks using xfem. Int J Numer Methods Eng 62(3):384-415
Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601-620
Bergara A, Dorado J, Martin-Meizoso A, Martínez-Esnaola J (2017) Fatigue crack propagation in complex stress fields:Experiments and numerical simulations using the extended finite element method (XFEM). Int J Fatigue 103:112-121
Bowness D, Lee M (1996) Stress intensity factor solutions for semi-elliptical weld-toe cracks in T-butt geometries. Fatigue Fract Eng Mater Struct 19(6):787-797
Bowness D, Lee M (2000) Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joints. Int J Fatigue 22(5):369-387
BSI (2015) Guide to methods for assessing the acceptability of flaws in metallic structures. Tech. Rep. BS 7910:2013+A1:2015, British Standards Institute, # 14. https://doi.org/10.3403/30241230
Cai J, Jiang X, Lodewijks G (2017) Residual ultimate strength of offshore metallic pipelines with structural damage-a literature review. Ships and Offshore Structures, 1037-1055
Cai J, Jiang X, Lodewijks G, Pei Z, Wu W (2018a) Residual ultimate strength of damaged seamless metallic pipelines with combined dent and metal loss. Marine Structures 61:188-201
Cai J, Jiang X, Lodewijks G, Pei Z, Wu W (2018b) Residual ultimate strength of damaged seamless metallic pipelines with metal loss. Marine Structures 58:242-253
Cai J, Jiang X, Lodewijks G, Pei Z, Wu W (2018c) Residual ultimate strength of seamless metallic pipelines under a bending moment-a numerical investigation. Ocean Engineering 164:148-159
da Silva AL, Correia J, de Jesus AM, Lesiuk G, Fernandes A, Calçada R, Berto F (2019) Influence of fillet end geometry on fatigue behaviour of welded joints. Int J Fatigue 123:196-212
Dake Y, Sridhar I, Zhongmin X, Kumar SB (2012) Fracture capacity of girth welded pipelines with 3D surface cracks subjected to biaxial loading conditions. Int J Press Vessel Pip 92:115-126
Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Computer Methods Appl Mech Eng 190(51-52):6825-6846
Gifford Jr LN, Hilton PD (1978) Stress intensity factors by enriched finite elements. Engineering Fracture Mechanics 10(3):485-496
Giner E, Sukumar N, Denia F, Fuenmayor F (2008) Extended finite element method for fretting fatigue crack propagation. Int J Solids Struct 45(22-23):5675-5687
Li Z, Jiang X, Hopman H, Zhu L, Liu Z (2020) An investigation on the circumferential surface crack growth in steel pipes subjected to fatigue bending. Theor Appl Fract Mech 105:102403
Lin X, Smith R (1999) Finite element modelling of fatigue crack growth of surface cracked plates:Part III:Stress intensity factor and fatigue crack growth life. Eng Fract Mech 63(5):541-556
Melenk JM, Babu?ka I (1996) The partition of unity finite element method:basic theory and applications. Comput Methods Appl Mech Eng 139(1-4):289-314
Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131-150
Newman Jr J, Raju I (1979) Analysis of surface cracks in finite plates under tension or bending loads. Tech. rep., Langley Research Center, Virginia, United States, NASA Technical Paper 1578
Newman Jr J, Raju I (1981) An empirical stress-intensity factor equation for the surface crack. Eng Fract Mech 15(1-2):185-192
Paris PC, Gomez MP, Anderson WE (1961) A rational analytic theory of fatigue. The Trends of Engineering 13:9-14
Schijve J (2001) Fatigue of structures and materials. Springer Science & Business Media
Shi J, Chopp D, Lua J, Sukumar N, Belytschko T (2010) Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Engineering Fracture Mechanics 77(14):2840-2863
Shipley RJ, Becker WT (2002) Failure analysis and prevention. ASM Handbook 11, 508
Shiratori M, Miyoshi T (1986) Analysis of stress intensity factors for surface cracks subjected to arbitrarily distributed stresses. In:Computational Mechanics’ 86. Springer, pp 1027-1032
Silva A, De Jesus A, Xavier J, Correia J, Fernandes A (2017) Combined analytical-numerical methodologies for the evaluation of mixed-mode (I+ II) fatigue crack growth rates in structural steels. Eng Fract Mech 185:124-138
Simulia D (2016) ABAQUS v6.14-Documentation. ABAQUS. http://130.149.89.49:2080/v6.14/
Singh I, Mishra B, Bhattacharya S, Patil R (2012) The numerical simulation of fatigue crack growth using extended finite element method. Int J Fatigue 36(1):109-119
Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48(11):1549-1570
Sukumar N, Prévost J-H (2003) Modeling quasi-static crack growth with the extended finite element method part I:Computer implementation. Int J Solids Struct 40(26):7513-7537
Ventura G, Budyn E, Belytschko T (2003) Vector level sets for description of propagating cracks in finite elements. Int J Numer Methods Eng 58(10):1571-1592
Wang X (2002) Stress intensity factors and weight functions for deep semi-elliptical surface cracks in finite-thickness plates. Fatigue Fract Eng Mater Struct 25(3):291-304
Zettlemoyer N, Fisher J (1977) Stress gradient correction factor for stress intensity at welded stiffeners and cover plates. Welding Journal 56(12):3938-3985
Zhang Y, Tan T, Xiao Z, Zhang W, Ariffin M (2016) Failure assessment on offshore girth welded pipelines due to corrosion defects. Fatigue Fract Eng Mater Struct 39(4):453-466