Al Shami E, Zhang R, Wang X (2019) Point absorber wave energy harvesters:a review of recent developments. Energies 12(1):47. https://doi.org/10.3390/en12010047
Andersen P, Pedersen TS, Nielsen KM, Vidal E, (2015). Model predictive control of a wave energy converter. 2015 IEEE Conf. Control Appl. CCA 2015-Proc, Sydney, 1540-1545. https://doi.org/10.1109/CCA.2015.7320829
Anvari-Moghaddam A, Mohammadi-Ivatloo B, Asadi S, Larsen KG, Shahidehpour M (2020) Sustainable energy systems planning, integration, and management. Applied Sciences, Switzerland. MDPI. https://doi.org/10.3390/app9204451
Astariz S, Iglesias G (2015) The economics of wave energy:a review. Renew Sust Energ Rev 45:397-408. https://doi.org/10.1016/j.rser.2015.01.061
Babarit A, Clément AH (2006) Optimal latching control of a wave energy device in regular and irregular waves. Appl Ocean Res 28(2):77-91. https://doi.org/10.1016/j.apor.2006.05.002
Budal K, Falnes J (1982) Wave power conversion by point absorbers:a Norwegian project. Int J Ambient Energy 3:59-67. https://doi.org/10.1080/01430750.1982.9675829
Cummins WE (1962) The impulse response function and ship motions. Navy Dep, David Taylor Model Basin
Czech B, Bauer P (2012) Wave energy converter concepts:design challenges and classification. IEEE Ind Electron Mag 6:4-16. https://doi.org/10.1109/MIE.2012.2193290
Daqaq MF, Masana R, Erturk A, Quinn DD (2014) On the role of nonlinearities in vibratory energy harvesting:a critical review and discussion. Appl Mech Rev 66(4):040801. https://doi.org/10.1115/1.4026278
Edenhofer O, Madruga RP, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (2011) Renewable energy sources and climate change mitigation:special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom. https://doi.org/10.1017/CBO9781139151153
Enerdata (2021) EnerOutlook 2050. Available from https://eneroutlook.enerdata.net/. Accessed 4 Mar 2021
Faedo N, Olaya S, Ringwood JV (2017) Optimal control, MPC and MPC-like algorithms for wave energy systems:an overview. IFAC J Syst Control 1:37-56. https://doi.org/10.1016/j.ifacsc.2017.07.001
Falcão AFDO (2008) Phase control through load control of oscillating-body wave energy converters with hydraulic PTO system. Ocean Eng 35(3-4):358-366. https://doi.org/10.1016/j.oceaneng.2007.10.005
Falcão AFDO (2010) Wave energy utilization:a review of the technologies. Renew Sust Energ Rev 14(3):899-918. https://doi.org/10.1016/j.rser.2009.11.003
Falnes J (2002) Ocean waves and oscillating systems:linear interactions including wave-energy extraction. Cambridge University Press, Cambridge
Garcia-Rosa PB, Kulia G, Ringwood JV, Molinas M (2017) Real-time passive control of wave energy converters using the Hilbert-Huang transform. IFAC-PapersOnLine 50(1):14705-14710. https://doi.org/10.1016/j.ifacol.2017.08.2502
Goggins J, Finnegan W (2014) Shape optimisation of floating wave energy converters for a specified wave energy spectrum. Renew Energy 71:208-220. https://doi.org/10.1016/j.renene.2014.05.022
Harne RLKWW (2017) Harnessing bistable structural dynamics:for vibration control, energy harvesting and sensing. Wiley
Henriques JCC, Gato LMC, Falcão AFO, Robles E, Faÿ FX (2016) Latching control of a floating oscillating-water-column wave energy converter. Renew Energy 90:229-241. https://doi.org/10.1016/j.renene.2015.12.065
Hulme A (1982) The wave forces acting on a floating hemisphere undergoing forced periodic oscillations. J Fluid Mech 121:443-463. https://doi.org/10.1017/S0022112082001980
Jin S, Patton RJ, Guo B (2019) Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning. Energy 169:819-832. https://doi.org/10.1016/j.energy.2018.12.074
Li G, Belmont MR (2014a) Model predictive control of sea wave energy converters-Part I:A convex approach for the case of a single device. Renew Energy 69:453-463. https://doi.org/10.1016/j.renene.2014.03.070
Li G, Belmont MR (2014b) Model predictive control of sea wave energy converters-Part II:The case of an array of devices. Renew Energy 68:540-549. https://doi.org/10.1016/j.renene.2014.02.028
Li L, Zhang X, Yuan Z, Gao Y (2019) Multi-stable mechanism of an oscillating-body wave energy converter. IEEE Trans Sustain Energy 11(1):500-508. https://doi.org/10.1109/tste.2019.2896991
Maria-Arenas A, Garrido AJ, Rusu E, Garrido I (2019) Control strategies applied to wave energy converters:State of the art. Energies 12(16). https://doi.org/10.3390/en12163115
Ogilvie TF (1964) Recent progress toward the understanding and prediction of ship motions. Proceedings of the 5th Symposium on Naval Hydrodynamics, Bergen, Norway
Pérez T, Fossen TI (2008) Time-vs. frequency-domain identification of parametric radiation force models for marine structures at zero speed. Model. Identif. Control 29(1):1-19. https://doi.org/10.4173/mic.2008.1.1
Pérez T, Fossen TI (2009) A Matlab toolbox for parametric identification of radiation-force models of ships and offshore structures. Model Identif Control 30(1):1-15. https://doi.org/10.4173/mic.2009.1.1
Ramlan R, Brennan MJ, MacE BR, Kovacic I (2010) Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn 59:545-558. https://doi.org/10.1007/s11071-009-9561-5
Reguero BG, Losada IJ, Méndez FJ (2019) A recent increase in global wave power as a consequence of oceanic warming. Nat Commun 10:1-14. https://doi.org/10.1038/s41467-018-08066-0
Rodríguez CA, Rosa-Santos P, Taveira-Pinto F (2019) Assessment of damping coefficients of power take-off systems of wave energy converters:a hybrid approach. Energy 169:1022-1038. https://doi.org/10.1016/j.energy.2018.12.081
Shadman M, Estefen SF, Rodriguez CA, Nogueira ICM (2018) A geometrical optimization method applied to a heaving point absorber wave energy converter. Renew Energy 115:533-546. https://doi.org/10.1016/j.renene.2017.08.055
Shadman M, Silva C, Faller D, Wu Z, de Freitas Assad LP, Landau L, Levi C, Estefen SF (2019) Ocean renewable energy potential, technology, and deployments:a case study of Brazil. Energies 12(19):3658. https://doi.org/10.3390/en12193658
Todalshaug JH (2015) Wave energy converter. International Patent WO 2015/107158 Al
Todalshaug JH, Ásgeirsson GS, Hjálmarsson E, Maillet J, Möller P, Pires P, Guérinel M, Lopes M (2016) Tank testing of an inherently phase-controlled wave energy converter. Int J Mar Energy 15:68-84. https://doi.org/10.1016/j.ijome.2016.04.007
Wei C, Jing X (2017) A comprehensive review on vibration energy harvesting:modelling and realization. Renew Sust Energ Rev 74:1-18. https://doi.org/10.1016/j.rser.2017.01.073
Wu Z, Levi C, Estefen SF (2018) Wave energy harvesting using nonlinear stiffness system. Appl Ocean Res 74:102-116. https://doi.org/10.1016/j.apor.2018.02.009
Wu Z, Levi C, Estefen SF (2019) Practical considerations on nonlinear stiffness system for wave energy converter. Appl Ocean Res 92:101935. https://doi.org/10.1016/j.apor.2019.101935
Younesian D, Alam MR (2017) Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting. Appl Energy 197:292-302. https://doi.org/10.1016/j.apenergy.2017.04.019
Zhang X, Yang J (2015) Power capture performance of an oscillating-body WEC with nonlinear snap through PTO systems in irregular waves. Appl Ocean Res 52:261-273. https://doi.org/10.1016/j.apor.2015.06.012
Zhang X, Yang J, Xiao L (2014) Numerical study of an oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves. J Ocean Wind Energy 1:225-230
Zhang X, Tian X, Xiao L, Li X, Chen L (2018) Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter. Appl Energy 228:450-467. https://doi.org/10.1016/j.apenergy.2018.06.100
Zhang X, Tian X, Xiao L, Li X, Lu W (2019a) Mechanism and sensitivity for broadband energy harvesting of an adaptive bistable point absorber wave energy converter. Energy 188:115984. https://doi.org/10.1016/j.energy.2019.115984
Zhang H, Xi R, Xu D, Wang K, Shi Q, Zhao H, Wu B (2019b) Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism. Energy 181:1152-1165. https://doi.org/10.1016/j.energy.2019.06.008