ASME (1989) Boiler and Pressure Vessel Code published on CD-ROM.VⅢ, American Society of Mechanical Engineers.
Bai Y, Bai Q (2018) Subsea engineering handbook. In Subsea Engineering Handbook https://doi.org/10.1016/C2016-0-03767-1
Bai X, Xu W, Ren H, Li J (2017) Analysis of the influence of stiffness reduction on the load carrying capacity of ring-stiffened cylindrical shell. Ocean Eng 135:52-62. https://doi.org/10.1016/j.oceaneng.2017.02.034
B?achut J (2009) Buckling of multilayered metal domes. Thin-Walled Struct 47(12):1429-1438. https://doi.org/10.1016/j.tws.2009.07.011
Boote D, Mascia D, Monti M, Rizzuto E, Tedeschi R (1997) Elastic instability of thin cylindrical shells:Numerical and experimental investigation. Ocean Eng 24(2):133-160. https://doi.org/10.1016/0029-8018(96)00004-2
Breddermann K, Drescher P, Polzin C, Seitz H, Paschen M (2016) Printed pressure housings for underwater applications. Ocean Eng 113:57-63. https://doi.org/10.1016/j.oceaneng.2015.12.033
Cai B, Liu Y, Liu Z, Tian X, Ren C, Abulimiti A (2013) Exploratory study on load and resistance factor design of pressure vessel for subsea blowout preventers. Eng Fail Anal 27:119-129. https://doi.org/10.1016/j.engfailanal.2012.08.020
Cho SR, Muttaqie T, Do QT, Kim S, Kim SM, Han DH (2018a) Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure. Int J Naval Arch Ocean Eng 10(6):711-729. https://doi.org/10.1016/j.ijnaoe.2017.12.002
Cho SR, Muttaqie T, Do QT, So HY, Sohn JM (2018b) Ultimate strength formulation considering failure mode interactions of ring-stiffened cylinders subjected to hydrostatic pressure. Ocean Eng 161:242-256. https://doi.org/10.1016/j.oceaneng.2018.04.083
Filonova V, Liu Y, Fish J (2015) Computational simulation, multi scale computations, and issues related to behavioral aspects of HSREP:singlescale and multiscale models of polyurea and high-density polyethylene (HDPE) subjected to high strain rates. In Elastomeric Polymers with High Rate Sensitivity:Applications in Blast, Shockwave, and Penetration Mechanics:233-256. https://doi.org/10.1016/B978-0-323-35400-4.00006-4
Galletly GD, Blachut J, Kruzelecki J (1987) Plastic buckling of imperfect hemispherical shells subjected to external pressure. Proc Inst Mech Eng C J Mech Eng Sci 201(3):153-170. https://doi.org/10.1243/PIME_PROC_1987_201_103_02
Ghanbari Ghazijahani T, Jiao H, Holloway D (2014) An experimental study on externally pressurized stiffened and thickened cylindrical shells. Thin-Walled Struct 85:359-366. https://doi.org/10.1016/j.tws.2014.08.023
Gong S, Sun B, Bao S, Bai Y (2012) Buckle propagation of offshore pipelines under external pressure. Mar Struct 29(1):115-130. https://doi.org/10.1016/j.marstruc.2012.10.006
Hashemian R, Mohareb M (2016) Finite difference model for the buckling analysis of sandwich pipes under external pressure. Ocean Eng 122:172-185. https://doi.org/10.1016/j.oceaneng.2016.06.003
He T, Duan M, An C (2014) Prediction of the collapse pressure for thick-walled pipes under external pressure. Appl Ocean Res 47:199-203. https://doi.org/10.1016/j.apor.2014.05.006
Hsu CY, Liang CC, Shiah SW, Jen CY (2005) A study of stress concentration effect around penetrations on curved shell and failure modes for deep-diving submersible vehicle. Ocean Eng 32(8-9):1098-1121. https://doi.org/10.1016/j.oceaneng.2004.05.011
Institution BS (1991) Structural Use of Timber:Code of Practice for Permissible Stress Design Materials and Workmanship. British Standards Institution.
Joung TH, Lee JH, Nho IS, Lee CM, Lee PM, Aoki T, Hyakudome T (2008) A study on the pressure vessel design, structural analysis and pressure test of a 6000 m depth-rated unmanned underwater vehicle. Ships Offshore Struct 3(3):205-214. https://doi.org/10.1080/17445300802204371
Le Grognec P, Casari P, Choqueuse D (2009) Influence of residual stresses and geometric imperfections on the elastoplastic collapse of cylindrical tubes under external pressure. Mar Struct 22(4):836-854. https://doi.org/10.1016/j.marstruc.2009.09.003
Li X, Jiang X, Hopman H (2018) A review on predicting critical collapse pressure of flexible risers for ultra-deep oil and gas production. Appl Ocean Res 80:1-10. https://doi.org/10.1016/j.apor.2018.08.013
Lin YC, Chen XM, Liu G (2010) A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel. Mater Sci Eng A 527(26):6980-6986. https://doi.org/10.1016/j.msea.2010.07.061
Loo T (1957) An extension of Donnells equation for a circular cylindrical shell. J Aeronaut Space Sci, (AMER INST AERONAUT).
MacKay JR, Van Keulen F, Smith MJ (2011) Quantifying the accuracy of numerical collapse predictions for the design of submarine pressure hulls. Thin-Walled Struct 49:145-156. https://doi.org/10.1016/j.tws.2010.08.015
Nguyen HLT, Elishakoff I, Nguyen VT (2009) Buckling under the external pressure of cylindrical shells with variable thickness. Int J Solids Struct 46(24):4163-4168. https://doi.org/10.1016/j.ijsolstr.2009.07.025
Pan B, Cui W (2010) An overview of buckling and ultimate strength of spherical pressure hull under external pressure. Mar Struct 23:227-240. https://doi.org/10.1016/j.marstruc.2010.07.005
Pranesh S, Kumar D, Subramanian VA, Sathianarayanan D, Ramadass G (2017) Non-linear buckling analysis of imperfect thin spherical pressure hull for manned submersible. J Ocean Eng Sci 2(4):293-300. https://doi.org/10.1016/j.joes.2017.11.001
Ross CTF (2011) Pressure vessels:external pressure technology. In Pressure Vessels:External Pressure Technology (2nd Edition). https://doi.org/10.1533/9780857092496
Ross CTF, Waterman GA (2000) Inelastic instability of circular corrugated cylinders under external hydrostatic pressure. Ocean Eng 27(4):331-343. https://doi.org/10.1016/S0029-8018(99)00035-9
Rotter JM, Teng J-G (2006) Buckling of thin metal shells. CRC Press, Boca Raton
Smith CS (1991) Design of submersible pressure hulls in composite materials. Mar Struct 4(2):141-182. https://doi.org/10.1016/0951-8339(91)90018-7
Tall M, Hariri S, Le Grognec P, Simonet Y (2018) Elastoplastic buckling and collapse of spherical shells under combined loadings. Thin-Walled Struct 123:114-125. https://doi.org/10.1016/j.tws.2017.10.041
Teng JG (1996) Buckling of thin shells:Recent advances and trends. Appl Mech Rev 49(4):263-274. https://doi.org/10.1115/1.3101927
Tian J, Wang CM, Swaddiwudhipong S (1999) Elastic buckling analysis of ring-stiffened cylindrical shells under general pressure loading via the Ritz method. Thin-Walled Struct 35(1):1-24. https://doi.org/10.1016/S0263-8231(99)00012-9
Timoshenko SP, Gere JM, Prager W (1962) Theory of Elastic Stability, Second Edition. J Appl Mech 29(1):220-221. https://doi.org/10.1115/1.3636481
Ventsel E, Krauthammer T (2002) Thin plates and shells:theory, analysis, and applications. Appl Mech Rev 55(4):B72-B73. https://doi.org/10.1115/1.1483356
Wagner HNR, Hühne C, Niemann S (2018) Robust knockdown factors for the design of spherical shells under external pressure:Development and validation. Int J Mech Sci 141:58-77. https://doi.org/10.1016/j.ijmecsci.2018.03.029
Yamaki, (1984) Elastic Stability of Circular Cylindrical Shell. Elsevier Science Publishers, Amsterdam
Yamamoto Y, Homma Y, Oshima K, Mishiro Y, Terada H, Yoshikawa T, Morihana H, Yamauchi Y, Takenaka M (1989) General instability of ring-stiffened cylindrical shells under external pressure. Mar Struct 2(2):133-149. https://doi.org/10.1016/0951-8339(89)90009-9
Zhang J, Wang WM, Cui WC, Tang WX, Wang F, Chen Y (2018) Buckling of longan-shaped shells under external pressure. Mar Struct 60:218-225. https://doi.org/10.1016/j.marstruc.2018.04.002
Zyczkowski M (2005) Post-buckling analysis of non-prismatic columns under general behaviour of loading. Int J Non-Linear Mech 40(4):445-463. https://doi.org/10.1016/j.ijnonlinmec.2004.05.014