|Table of Contents|

Citation:
 Renwei Ji,Qihu Sheng,Shuqi Wang,et al.Array Characteristics of Oscillating-Buoy Two-Floating-Body Wave-Energy Converter[J].Journal of Marine Science and Application,2019,(3):325-333.[doi:10.1007/s11804-019-00079-5]
Click and Copy

Array Characteristics of Oscillating-Buoy Two-Floating-Body Wave-Energy Converter

Info

Title:
Array Characteristics of Oscillating-Buoy Two-Floating-Body Wave-Energy Converter
Author(s):
Renwei Ji12 Qihu Sheng12 Shuqi Wang3 Yuquan Zhang4 Xuewei Zhang12 Liang Zhang12
Affilations:
Author(s):
Renwei Ji12 Qihu Sheng12 Shuqi Wang3 Yuquan Zhang4 Xuewei Zhang12 Liang Zhang12
1 College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China;
2 Institute of Ocean Renewable Energy System, Harbin Engineering University, Harbin 150001, China;
3 College of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212001, China
Keywords:
Oscillating buoyTwo-floating bodyWave-energy converterAQWAConverter arrayPower characteristics
分类号:
-
DOI:
10.1007/s11804-019-00079-5
Abstract:
As the energy supply problem worsens, the development and utilization of marine renewable energy have become a research hotspot. The development of wave energy is moving from the near shore to the distant sea. The power-generation efficiency of a single two-floating-body wave-energy converter is relatively low. To fully utilize wave energy and improve the wave-energy capture rate of a fixed sea area, arranging a two-floating-body wave-energy converter array is necessary. This paper first introduces the basic theory of multi-floating flow field, time-domain calculation method, and influence factor of the waveenergy converter array. Then, the development of AQWA software in Fortran language considers the effect of power takeoff. A calculation method based on ANSYS-AQWA is proposed to simulate the motion of the oscillating-buoy two-floating-body wave-energy converter. The results are compared with the experimental results from the National Renewable Energy Laboratory. Finally, the ANSYS-AQWA method is used to study the power characteristics of simple and complex arrays of wave-energy converters. The average power generation of simple arrays is largest at 0°, and the average power generation of complex arrays does not change with the wave direction. Optimal layout spacing exists for the simple and complex arrays. These findings can serve as a valuable reference for the large-scale array layout of wave-energy converters in the future.

References:

Borgarino B, Babarit A, Ferrant P (2012) Impact of wave interactions effects on energy absorption in large arrays of wave energy converters. Ocean Eng 41:79-88. https://doi.org/10.1016/j.oceaneng.2011.12.025
Budal K (1977) Theory for absorption of wave power by a system of interacting bodies. J Ship Res 21(4):248-253. https://doi.org/10.1016/0022-1694(77)90030-0
Chen X (2013) Time-domain simulation of the motion response of FPSO in waves. Master thesis, Harbin Institute of Technology, Harbin, 32-50
Child BFM (2011) On the configuration of arrays of floating wave energy converters. PhD thesis, University of Edinburgh, Edinburgh
Child BFM, Venugopal V (2010) Optimal configurations of wave energy device arrays. Ocean Eng 37(16):1402-1417. https://doi.org/10.1016/j.oceaneng.2010.06.010
Dai YM (2015) Research on a floating type double floating wave power generation device. Master thesis, South China University of Technology, Guangzhou, 28-65
Eriksson M, Isberg J, Leijon M (2005) Hydrodynamic modelling of a direct drive wave energy converter. Int J Eng Sci 43:1377-1387.https://doi.org/10.1016/j.ijengsci.2005.05.014
Evans DV (1979) Some theoretical aspects of three-dimensional waveenergy absorbers. Proceedings of the First Symposium on Wave Energy Utilization, Chalmers University of Technology, Gothenburg, Sweden, 77-106
Falnes J (1980) Radiation impedance matrix and optimum power absorption for interacting oscillators in surface waves. Appl Ocean Res 2(2):75-80. https://doi.org/10.1016/0141-1187(80)90032-2
Garnaud X, Mei CC (2009) Wave-power extraction by a compact array of buoys. J Fluid Mech 635:389-413
Guan Y (2011) Feasibility study on the development and utilization of wave energy in China. Master thesis, Ocean University of China, Qingdao, 10-30.
DOI:https://doi.org/10.7666/d.d169536
Gunn K, Stock-Williams C (2012) Quantifying the global wave power resource. Renew Energy 44(4):296-304. https://doi.org/10.1016/j.renene.2012.01.101
Guo W, Zhou NF, Wang SQ, Zhao QS (2018) Hydrodynamic and capacitated analysis of wave energy devices with nonlinear PTO. Journal of Huazhong University of Science and Technology (Natural Science Edition) 2018(4):57-62. https://doi.org/10.13245/j.hust.180411
Li JY, He HZ (2013) A review of the technical research on wave energy acquisition device. Ocean Development and Management 30(10):67-71. https://doi.org/10.3969/j.issn.1005-9857.2013.10.014
Nazari M, Ghassemi H, Ghiasi M, Sayehbani M (2013) Design of the point absorber wave energy converter for Assaluyeh port. Iranica Journal of Energy & Environment 4(2):130-135. https://doi.org/10.5829/idosi.ijee.2013.04.02.09
Sinha A, Karmakar D, Guedes Soares C (2016) Performance of optimally tuned arrays of heaving point absorbers. Renew Energy 92:517-531. https://doi.org/10.1016/j.renene.2016.02.043
Teng B, Zhao MZ, Jiang SC, Gou Y, Lv L (2010) Calculation and analysis of hydrodynamic coefficient of spar platform heave plate. Ocean Eng 28(3):1-8. https://doi.org/10.3969/j.issn.1005-9865.2010.03.001
Thomas G, Evans DV (1981) Arrays of the three-dimensional wave-energy absorbers. J Fluid Mech 108:67-88. https://doi.org/10.1017/S0022112081001997
Wolgamot HA, Taylor PH, Taylor RE (2012) The interaction factor and directionality in wave energy arrays. Ocean Eng 47:65-73. https://doi.org/10.1016/j.oceaneng.2012.03.017
Xu G, Wang S, Zhu R, Zhang L (2018) Hydrodynamic analysis of variable-pitch vertical axis turbine under yawing motion. Journal of Harbin Engineering University 39(2):304-309. https://doi.org/10.11990/jheu.201608032
Yu YH, Li Y (2013) Reynolds-averaged Navier-Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system. Comput Fluids 73:104-114. https://doi.org/10.1016/j.compfluid.2012.10.007
Zhang XT (2015) Hydrodynamic study of oscillating floating wave energy generator. Master thesis, Shanghai Jiao Tong University, Shanghai, pp 26-45
Zhang L, Dai YS (1992) Time-domain solution to the diffraction problem of objects sailing near the surface. Shipbuilding of China 33(4):1-14
Zhao SM, Liu FY, Zhang JH, Zhang ZH, Bai Y, Zhang R (2008) Basic thinking of China’s marine energy development and utilization strategy research. Ocean Technol 27(3):80-83

Memo

Memo:
Received date:2018-07-26;Accepted date:2018-11-18。
Foundation item:Supported by the National Natural Science Foundation of China under Grant Nos. 5171101175, 11572094, 51809083, and 51579055.
Corresponding author:Qihu Sheng,shengqihu@hrbeu.edu.cn
Last Update: 2019-09-18