|Table of Contents|

Citation:
 Mohamed Taher Bouzaher,Belhi Guerira,Mohamed Hadid.Performance Analysis of a Vertical Axis Tidal Turbine With Flexible Blades[J].Journal of Marine Science and Application,2017,(1):73-80.[doi:10.1007/s11804-017-1391-0]
Click and Copy

Performance Analysis of a Vertical Axis Tidal Turbine With Flexible Blades

Info

Title:
Performance Analysis of a Vertical Axis Tidal Turbine With Flexible Blades
Author(s):
Mohamed Taher Bouzaher12 Belhi Guerira1 Mohamed Hadid1
Affilations:
Author(s):
Mohamed Taher Bouzaher12 Belhi Guerira1 Mohamed Hadid1
1. Laboratoire de Génie Mécanique, Université de Biskra, Biskra 07000, Algeria;
2. Unit of Applied Research in Renewable Energy, BP 88, Garat Ettaam, Ghardaïa, Algeria
Keywords:
flexible bladesvertical axis tidal turbineenergy harnessing efficiencyflow controlrigid bladeperformance analysis
分类号:
-
DOI:
10.1007/s11804-017-1391-0
Abstract:
In this study, a vertical axis tidal turbine with flexible blades is investigated. The focus is on analyzing the effect of flexible airfoils types and blade flexibility on turbine net output power. To this end, five different flexible airfoils (Symmetric and Non-symmetric) are employed. The results show that the use of a thick flexible symmetric airfoil can effectively increase output power compared to that achievable with a conventional rigid blade. Moreover, the use of highly flexible blades, as opposed to less flexible or rigid blades, is not recommended.

References:

Amet E, Maître T, Pellone C, ACHARD JL, 2009. 2D numerical simulations of blade-vortex interaction in a Darrieus turbine. Journal of Fluids Engineering, 131(11), 111103.
DOI: 10.1115/1.4000258
Bandyopadhyay PR, 2004. Biology-inspired science and technology for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 29(3), 542-546.
DOI: 10.1109/JOE.2004.833099
Castelli MR, Englaro A, Benini E, 2011. The Darrieus tidal turbine: proposal for a newperformance prediction model based on CFD. Energy, 36(8), 4919-4934.
DOI: http://dx.doi.org/10.1016/j.energy.2011.05.036
Fish FE, 2004. Structure and mechanics of nonpiscine control surfaces. IEEE Journal of Oceanic Engineering, 29(3), 605-621.
DOI: 10.1109/JOE.2004.833213
Lin CS, Hwu C, Young WB, 2006. The thrust and lift of an ornithopter’s membrane wings with simple flapping motion. Aerospace Science and Technology, 10, 111-119.
DOI: http://dx.doi.org/10.1016/j.ast.2005.10.003
Liu W, Xiao.Q, Cheng F, 2013. A bio-inspired study on tidal energy extraction with flexible flapping wings. Bioinspiration and Biomimetics, 8, 036011.
DOI:10.1088/1748-3182/8/3/036011
Liu W, Xiao Q, 2015. Investigation on Darrieus type straight blade vertical axis wind turbine with flexible blade. Ocean Engineering, 110, 339-356.
DOI: http://dx.doi.org/10.1016/j.oceaneng.2015.10.027
Maître T, Amet E, Pellone C, 2013. Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments. Renewable Energy, 51, 497-512.
DOI: http://dx.doi.org/10.1016/j.renene.2012.09.030
Mazaheri K, Ebrahimi A, 2010. Experimental investigation of the effect of chordwise flexibility on the aerodynamics of flapping wings in hovering flight. Journal of Fluids and Structures, 26(4), 544-558.
DOI: http://dx.doi.org/10.1016/j.jfluidstructs.2010.03.004
Miao JM, Ho MH, 2006. Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil. Journal of Fluids and Structures, 22(3), 401-419.
DOI: http://dx.doi.org/10.1016/j.jfluidstructs.2005.11.004
Nakata T, Liu H, 2012. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc.R. Soc. B, 279, 722-731.
Shih T, Liou WW, Shabbir A, Yang Z, Zhu J, 1995. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers and Fluids, 24(3), 227-238.
Shoele K, Zhu Q, 2012. Leading edge strengthening and the propulsion performance of flexible ray fins. J. Fluid Mech., 693, 402-32.
DOI: https://doi.org/10.1017/jfm.2011.538
Tian FB, Young J, Lai JCS, 2014. Improving power-extraction efficiency of a flapping plate: from passive deformation to active control. Journal of Fluids and Structures, 51, 384-392.
DOI: http://dx.doi.org/10.1016/j.jfluidstructs.2014.07.013
Wu J, Liu C, Yang YC, Zhao, 2015. Influence of a flexible tail on the performance of a foil hovering near the ground: Numerical investigation. European Journal of Mechanics B/Fluids, 52, 85-96.
DOI: http://dx.doi.org/10.1016/j.euromechflu.2015.02.004
Xiao Q, Liu W, Incecik A, 2013. Flow control for VATT by fixed and oscillating flap. Renewable Energy, 51, 141-152.
DOI: http://dx.doi.org/10.1016/j.renene.2012.09.021
Yu J, Liu L, Tan M, 2008. Three-dimensional dynamic modeling of robotic fish: simulations and experiments. Transactions of the Institute of Measurement and Control, 30(3/4), 239-2580.
Zhu Q, 2007. Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J., 45(10), 2448-2457.

Memo

Memo:
Received date:2016-04-06;Accepted date:2016-10-31。
Corresponding author:Mohamed Taher Bouzaher,Email:mohamedbouzaher2@gmail.com
Last Update: 2017-03-25