|Table of Contents|

Citation:
 Seyed Ehsan Rafiee,M. M. Sadeghiazad.Experimental Study and 3D CFD Analysis on the Optimization of Throttle Angle for a Convergent Vortex Tube[J].Journal of Marine Science and Application,2016,(4):388-404.[doi:10.1007/s11804-016-1387-1]
Click and Copy

Experimental Study and 3D CFD Analysis on the Optimization of Throttle Angle for a Convergent Vortex Tube

Info

Title:
Experimental Study and 3D CFD Analysis on the Optimization of Throttle Angle for a Convergent Vortex Tube
Author(s):
Seyed Ehsan Rafiee M. M. Sadeghiazad
Affilations:
Author(s):
Seyed Ehsan Rafiee M. M. Sadeghiazad
Department of Mechanical Engineering, Urmia University of Technology, Urmia P. O. Box 57155- 419, Iran
Keywords:
convergent vortex tube|throttle valve|CFD|conical valve angle|injection pressure|slots number|optimization
分类号:
-
DOI:
10.1007/s11804-016-1387-1
Abstract:
Seven adjustments of convergent-type Vortex Tube (VT) with different throttle angles were applied. The adjustments were made to analyze the influences of such angles on cold and hot temperature drops as well as flow structures inside the VTs. An experimental setup was designed, and tests were performed on different convergent VT configurations at injection pressures ranging from 0.45 to 0.65 MPa. The angles of the throttle valve were arranged between 30° to 90°, and the numbers of injection nozzles ranged between 2 and 6. Laboratory results indicated that the maximum hot and cold temperature drops ranged from 23.24 to 35 K and from 22.87 to 32.88 K, respectively, at four injection nozzles. Results also showed that temperature drop is a function of hot throttle valve angle with the maximum hot and cold temperature drops depending on the angle applied. We used graphs to demonstrate the changes in the cold and hot temperature drops with respect to hot throttle angle values. These values were interpreted and evaluated to determine the optimum angle, which was 60°. The CFD outputs agreed very well with the laboratory results. The proposed CFD results can help future researchers gain good insights into the complicated separation process taking place inside the VTs.

References:

Agrawal N, Naik SS, Gawale YP, 2014. Experimental investigation of vortex tube using natural substances. International Communications in Heat and Mass Transfer, 52, 51-55.
DOI: 10.1016/j.icheatmasstransfer.2014.01.009
Ahlborn BK, Gordon JM, 2000. The vortex tube as a classic thermodynamic refrigeration cycle. Journal of Applied Physics, 88(6), 3645-3653.
DOI: 10.1063/1.1289524
Akhesmeh S, Pourmahmoud N, Sedgi H, 2008. Numerical study of the temperature separation in the Ranque–Hilsch vortex tube. American Journal of Engineering and Applied Sciences, 1(3), 181-187.
DOI: 10.3844/ajeassp.2008.181.187
Alekhin V, Bianco V, Khait A, Noskov A, 2015. Numerical investigation of a double-circuit Ranque–Hilsch vortex tube. International Journal of Thermal Sciences, 89, 272-282.
DOI: 10.1016/j.ijthermalsci.2014.11.012
Aljuwayhel NF, Nellis GF, Klein SA, 2005. Parametric and internal study of the vortex tube using a CFD model. Int J Refrigeration, 28(3), 442-450.
DOI: 10.1016/j.ijrefrig.2004.04.004
Avci M, 2013. The effects of nozzle aspect ratio and nozzle number on the performance of the Ranque–Hilsch vortex tube. Applied Thermal Engineering, 50(1), 302-308.
DOI: 10.1016/j.applthermaleng.2012.06.048
Aydin O, Baki M, 2006. An experimental study on the design parameters of a counter flow vortex tube. Energy, 31(14), 2763-2772.
DOI: 10.1016/j.energy.2005.11.017
Baghdad M, Ouadha A, Imine O, Addad Y, 2011. Numerical study of energy separation in a vortex tube with different RANS models. Int. J. Thermal Sciences, 50(12), 2377-2385.
DOI: 10.1016/j.ijthermalsci.2011.07.011
Bej N, Sinhamahapatra KP, 2014. Energy analysis of a hot cascade type Ranque–Hilsch vortex tube using turbulence model. International Journal of Refrigeration, 45, 13-24.
DOI: 10.1016/j.ijrefrig.2014.05.020
Berber A, Dincer K, Y?lmaz Y, Ozen DN, 2013. Rule-based Mamdani-type fuzzy modeling of heating and cooling performances of counter-flow Ranque–Hilsch vortex tubes with different geometric construction for steel. Energy, 51, 297-304.
DOI: 10.1016/j.energy.2013.01.005
Bovand M, Valipour MS, Dincer K, Tamayol A, 2014a. Numerical analysis of the curvature effects on Ranque–Hilsch vortex tube refrigerators. Applied Thermal Engineering, 65(1-2), 176-183.
DOI: 10.1016/j.applthermaleng.2013.11.045
Bovand M, Valipour MS, Eiamsa-ard S, Tamayol A, 2014b. Numerical analysis for curved vortex tube optimization. International Communications in Heat and Mass Transfer, 50, 98-107.
DOI: 10.1016/j.icheatmasstransfer.2013.11.012
Chang K, Li Q, Zhou G, Li Q, 2011. Experimental investigation of vortex tube refrigerator with a divergent hot tube. International Journal of Refrigeration, 34(1), 322- 327.
DOI: 10.1016/j.ijrefrig.2010.09.001
Dincer K, 2011. Experimental investigation of the effects of threefold type Ranque–Hilsch vortex tube and six cascade type Ranque–Hilsch vortex tube on the performance of counter flow Ranque–Hilsch vortex tubes. International Journal of Refrigeration, 34(6), 1366-1371.
DOI: 10.1016/j.ijrefrig.2011.05.008
Dincer K, Baskaya S, Uysal BZ, 2008. Experimental investigation of the effects of length to diameter ratio and nozzle number on the performance of counter flow RanqueeHilsch vortex tubes. Heat Mass Transfer, 44(3), 367-373.
DOI: 10.1007/s00231-007-0241-z
Dutta T, Sinhamahapatra KP, Bandyopadhyay SS, 2011. Numerical investigation of gas species and energy separation in the Ranque–Hilsch vortex tube using real gas model. International Journal of Refrigeration, 26(8), 2118-2128.
DOI: 10.1016/j.ijrefrig.2011.06.004
Farzaneh-Gord M, Sadi M, 2014. Improving vortex tube performance based on vortex generator design. Energy, 72, 492-500.
DOI: 10.1016/j.energy.2014.05.071
Gutak AD, 2015. Experimental investigation and industrial application of Ranque–Hilsch vortex tube. International Journal of Refrigeration, 49, 93-98.
DOI: 10.1016/j.ijrefrig.2014.09.021
Han X, Li N, Wu K, Wang Z, Tang L, Chen G, Xu X, 2013. The influence of working gas characteristics on energy separation of vortex tube. Applied Thermal Engineering, 61(2), 171-177.
DOI: 10.1016/j.applthermaleng.2013.07.027
Hilsch R, 1947. The use of expansion of gases in a centrifugal field as a cooling process. Rev. Sci. Instrum, 18, 108-113.
DOI: 10.1063/1.1740893
Im SY, Yu SS, 2012. Effects of geometric parameters on the separated air flow temperature of a vortex tube for design optimization. Energy, 37(1), 154-160.
DOI: 10.1016/j.energy.2011.09.008
Kandil HA, Abdelghany ST, 2015. Computational investigation of different effects on the performance of the Ranque–Hilsch vortex tube. Energy, 84, 207-218.
DOI: 10.1016/j.energy.2015.02.089
Khait AV, Noskov AS, Lovtsov AV, Alekhin VN, 2014. Semi-empirical turbulence model for numerical simulation of swirled compressible flows observed in Ranque–Hilsch vortex tube. International Journal of Refrigeration, 48, 132-141.
DOI: 10.1016/j.ijrefrig.2014.09.006
Khazaei H, Teymourtash AR, Malek-Jafarian M, 2012. Effects of gas properties and geometrical parameters on performance of a vortex tube. Scientia Iranica, 19(3), 454-462.
DOI: 10.1016/j.scient.2012.03.003
Korkmaz ME, Gümü?el L, Markal B, 2012. Using artificial neural network for predicting performance of the Ranque–Hilsch vortex tube. International Journal of Refrigeration, 35(6), 1690-1696.
DOI: 10.1016/j.ijrefrig.2012.04.013
Kulyk M, Lastivka I, Tereshchenko Y, 2012. Effect of hysteresis in axial compressors of gas-turbine engines,. Aviation, 16(4), 97-102.
DOI: 10.3846/16487788.2012.753679
Li N, Zeng ZY, Wang Z, Han XH, Chen GM, 2015. Experimental study of the energy separation in a vortex tube. International Journal of Refrigeration, 55, 93-101.
DOI: 10.1016/j.ijrefrig.2015.03.011
Liu X, Liu Z, 2014. Investigation of the energy separation effect and flow mechanism inside a vortex tube. Applied Thermal Engineering, 67(1-2), 494-506.
DOI: 10.1016/j.applthermaleng.2014.03.071
Moffat RJ, 1985. Using uncertainty analysis in the planning of an experiment. Trans. ASME, J. Fluids Eng., 107(2), 173-178.
DOI:10.1115/1.3242452
Mohammadi S, Farhadi F, 2013. Experimental analysis of a Ranque–Hilsch vortex tube for optimizing nozzle numbers and diameter. Applied Thermal Engineering, 61(2), 500-506.
DOI: 10.1016/j.applthermaleng.2013.07.043
Mohammadi S, Farhadi F, 2014. Experimental and numerical study of the gas–gas separation efficiency in a Ranque–Hilsch vortex tube. Separation and Purification Technology, 138(10), 177-185.
DOI: 10.1016/j.seppur.2014.10.022
Nimbalkar SU, Muller MR, 2009. An experimental investigation of the optimum geometry for the cold end orifice of a vortex tube,”Appl Therm Eng, 29(2–3), 509-514.
DOI: 10.1016/j.applthermaleng.2008.03.032
Ouadha, A., Baghdad, M., Addad, Y., 2013, “Effects of variable thermophysical properties on flow and energy separation in a vortex tube. International Journal of Refrigeration, 36(8), 2426-2437.
DOI: 10.1016/j.ijrefrig.2013.07.018
Pinar AM, Uluer O, K?rmaci V, 2009. Optimization of counter flow Ranque–Hilsch vortex tube performance using Taguchi method. International Journal of Refrigeration, 32, 1487-1494.
DOI:10.1016/j.ijrefrig.2009.02.018
Piralishvili SA, Polyaev VM, 1996. Flow and thermodynamic characteristics of energy separation in a double-circuit vortex tube–an experimental investigation. Experimental Thermal and Fluid Science, 12(4), 399-410.
DOI: 10.1016/0894-1777(95)00122-0
Pourmahmoud N, Hassanzadeh A, Moutaby O, 2012a. Numerical analysis of the effect of helical nozzles gap on the cooling capacity of Ranque–Hilsch vortex tube. International Journal of Refrigeration, 35(5), 1473-1483.
DOI:10.1016/j.ijrefrig.2012.03.019
Pourmahmoud N, Hassanzadeh A, Rafiee SE, Rahimi M, 2012b. Three-dimensional numerical investigation of effect of convergent nozzles on the energy separation in a vortex tube. International Journal of Heat and Technology, 30(2), 133-140.
Pourmahmoud N, Rafiee SE, Rahimi M, Hassanzadeh A, 2013. Numerical energy separation analysis on the commercial Ranque-Hilsch vortex tube on basis of application of different gases. Scientia Iranica, 20(5), 1528-1537.
Pourmahmoud N, Rahimi M, Rafiee SE, Hassanzadeh A, 2014. A numerical simulation of the effect of inlet gas temperature on the energy separation in a vortex tube. Journal of Engineering Science and Technology, 9(1), 81-96.
Rafiee SE, Ayenehpour S, Sadeghiazad MM, 2016. A study on the optimization of the angle of curvature for a Ranque–Hilsch vortex tube, using both experimental and full Reynolds stress turbulence numerical modeling. Heat and Mass Transfer, 52(2), 337-350.
DOI: 10.1007/s00231-015-1562-y
Rafiee SE, Rahimi M, 2013. Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance-Validation and CFD optimization. Energy, 63, 195-204.
DOI:10.1016/j.energy.2013.09.060
Rafiee SE, Rahimi M, 2014. Three-dimensional simulation of fluid flow and energy separation inside a vortex tube. Journal of Thermophysics and Heat Transfer, 28(1), 87-99.
DOI: 10.2514/1.T4198
Rafiee SE, Rahimi M, Pourmahmoud N, 2013. Three-dimensional numerical investigation on a commercial vortex tube based on an experimental model- Part I: Optimization of the working tube radius. International Journal of Heat and Technology, 31(1), 49-56.
Rafiee SE, Sadeghiazad MM, 2014a, Three-dimensional and experimental investigation on the effect of cone length of throttle valve on thermal performance of a vortex tube using k–ε turbulence model. Applied Thermal Engineering, 66(1-2), 65-74.
DOI:10.1016/j.applthermaleng.2014.01.073
Rafiee SE, Sadeghiazad MM, 2014b. 3D cfd exergy analysis of the performance of a counter flow vortex tube. International Journal of Heat and Technology, 32(1-2), 71-77.
Rafiee SE, Sadeghiazad MM, 2014c. Effect of conical valve angle on cold-exit temperature of vortex tube. Journal of Thermophysics and Heat Transfer, 28(4), 785-794.
DOI: 10.2514/1.T4376
Rafiee SE, Sadeghiazad MM, 2015. 3D numerical analysis on the effect of rounding off edge radius on thermal separation inside a vortex tube. International Journal of Heat and Technology, 33(1), 83-90.
Rafiee SE, Sadeghiazad MM, 2016a. Three-dimensional numerical investigation of the separation process in a vortex tube at different operating conditions. Journal of Marine Science and Application, 15(2), 157-165.
DOI: 10.1007/s11804-016-1348-8
Rafiee SE, Sadeghiazad MM, 2016b. Three-dimensional computational prediction of vortex separation phenomenon inside the Ranque–Hilsch vortex tube. Aviation, 20(1), 21-31.
DOI: 10.3846/16487788.2016.1139814
Rafiee SE, Sadeghiazad MM, 2016c. Heat and mass transfer between cold and hot vortex cores inside Ranque-Hilsch vortex tube-optimization of hot tube length. International Journal of Heat and Technology, 34(1), 31-38.
DOI: 10.18280/ijht.340105
Rafiee SE, Sadeghiazad MM, 2016d. Three-dimensional CFD simulation of fluid flow inside a vortex tube on basis of an experimental model- The optimization of vortex chamber radius. International Journal of Heat and Technology, 34(2), 236-244.
DOI: 10.18280/ijht.340212
Rafiee SE, Sadeghiazad MM, 2016e. Experimental and 3D-CFD study on optimization of control valve diameter for a convergent vortex tube. Frontiers in Heat and Mass Transfer, 7(1), 1-15.
DOI: 10.5098/hmt.7.13
Rafiee SE, Sadeghiazad MM, 2017. Experimental and 3D CFD investigation on heat transfer and energy separation inside a counter flow vortex tube using different shapes of hot control valves. Applied Thermal Engineering, 110, 648-664.
DOI: 10.1016/j.applthermaleng.2016.08.166
Rafiee SE, Sadeghiazad MM, Mostafavinia N, 2015. Experimental and numerical investigation on effect of convergent angle and cold orifice diameter on thermal performance of convergent vortex tube. Journal of Thermal Science and Engineering Applications, 7(4), 041006.
DOI: 10.1115/1.4030639
Rahimi M, Rafiee SE, Pourmahmoud N, 2013. Numerical investigation of the effect of divergent hot tube on the energy separation in a vortex tube. International Journal of Heat and Technology, 31(2), 17-26.
Ranque GJ, 1933. Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air. Le J. de Physique et le Radium, 4, 112-114.
Saidi MH, Allaf Yazdi MR, 1999. Energy model of a vortex tube system with experimental results. Energy, 24, 625-632.
DOI: 10.1016/S0360-5442(98)00076-0
Sadi M, Farzaneh-Gord M, 2014. Introduction of annular vortex tube and experimental comparison with ranque–hilsch vortex tube. International Journal of Refrigeration, 46, 142-151.
DOI:10.1016/j.ijrefrig.2014.07.004
Saidi MH, Valipour MS, 2003. Experimental modeling of vortex tube refrigerator. Applied Thermal Engineering, 23(15), 1971-1980.
DOI: 10.1016/S1359-4311(03)00146-7
Secchiaroli A, Ricci R, Montelpare S, D’Alessandro V, 2009. Numerical simulation of turbulent flow in a RanqueeHilsch vortex tube. International Journal of Heat and Mass Transfer, 52(23-24), 5496-5511.
DOI: 10.1016/j.ijheatmasstransfer.2009.05.031
Shamsoddini R, Hossein Nezhad A, 2010. Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube. International Journal of Refrigeration, 33(4), 774-782.
DOI: 10.1016/j.ijrefrig.2009.12.029
Skye HM, Nellis GF, Klein SA, 2006. Comparison of CFD analysis to empirical data in a commercial vortex tube. International Journal of Refrigeration, 29(1), 71-80.
DOI: 10.1016/j.ijrefrig.2005.05.004
Stephan K, Lin S, Durst M, Seher F, Huang D, 1983. An investigation of energy separation in a vortex tube. International Journal of Heat and Mass Transfer, 26(3), 341-348.
DOI: 10.1016/0017-9310(83)90038-8
Subudhi S, Sen M, 2015. Review of Ranque–Hilsch vortex tube experiments using air. Renewable and Sustainable Energy Reviews, 52, 172-178.
DOI: 10.1016/j.rser.2015.07.103
Thakare HR, Monde A, Parekh AD, 2015. Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review. Renewable and Sustainable Energy Reviews, 52, 1043-1071.
DOI: 10.1016/j.rser.2015.07.198
Thakare HR, Parekh AD, 2015. Computational analysis of energy separation in counter—flow vortex tube. Energy, 85, 62-77.
DOI:10.1016/j.energy.2015.03.058
Valipour MS, Niazi N, 2011. Experimental modeling of a curved Ranque–Hilsch vortex tube refrigerator. International Journal of Refrigeration, 34(4), 1109-1116.
DOI:10.1016/j.ijrefrig.2011.02.013

Memo

Memo:
Received date:2016-4-27;Accepted date:2016-5-24。
Corresponding author:Seyed Ehsan Rafiee
Last Update: 2016-11-24