|Table of Contents|

Citation:
 Seyed Ehsan Rafiee,M. M. Sadeghiazad.Three-Dimensional Numerical Investigation of the Separation Process in a Vortex Tube at Different Operating Conditions[J].Journal of Marine Science and Application,2016,(2):157-165.[doi:10.1007/s11804-016-1348-8]
Click and Copy

Three-Dimensional Numerical Investigation of the Separation Process in a Vortex Tube at Different Operating Conditions

Info

Title:
Three-Dimensional Numerical Investigation of the Separation Process in a Vortex Tube at Different Operating Conditions
Author(s):
Seyed Ehsan Rafiee M. M. Sadeghiazad
Affilations:
Author(s):
Seyed Ehsan Rafiee M. M. Sadeghiazad
Department of Mechanical Engineering, Urmia University of Technology, Urmia P.O. Box 57155-419, Iran
Keywords:
vortex tubeair separatorseparation processoperating gasnumerical simulation
分类号:
-
DOI:
10.1007/s11804-016-1348-8
Abstract:
Air separators provide safe, clean, and appropriate air flow to engines and are widely used in vehicles with large engines such as ships and submarines. In this operational study, the separation process in a Ranque–Hilsch vortex tube cleaning (cooling) system is investigated to analyze the impact of the operating gas type on the vortex tube performance; the operating gases used are air, nitrogen, oxygen, carbon dioxide and nitrogen dioxide. The computational fluid dynamic model used is equipped with a three-dimensional structure, and the steady-state condition is applied during computations. The standard kε turbulence model is employed to resolve nonlinear flow equations, and various key parameters, such as hot and cold exhaust thermal drops, and power separation rates, are described numerically. The results show that nitrogen dioxide creates the greatest separation power out of all gases tested, and the numerical results are validated by good agreement with available experimental data. In addition, a comparison is made between the use of two different boundary conditions, the pressure-far-field and the pressure-outlet, when analyzing complex turbulent flows in the air separators. Results present a comprehensive and practical solution for use in future numerical studies.

References:

Baghdad M, Ouadha A, Imine O, Addad Y, 2011. Numerical study of energy separation in a vortex tube with different RANS models. International Journal of Thermal Sciences, 50(12), 2377-2385.
DOI: 10.1016/j.ijthermalsci.2011.07.011
Bovand M, Valipour MS, Dincer K, Tamayol A, 2014a. Numerical analysis of the curvature effects on Ranque–Hilsch vortex tube refrigerators. Applied Thermal Engineering, 65(1-2), 176-183.
DOI: 10.1016/j.applthermaleng.2013.11.045
Bovand M, Valipour MS, Eiamsa-ard S, Tamayol A, 2014b. Numerical analysis for curved vortex tube optimization. International Communications in Heat and Mass Transfer, 50, 98-107.
DOI: 10.1016/j.icheatmasstransfer.2013.11.012
Dincer K, 2011. Experimental investigation of the effects of threefold type Ranque–Hilsch vortex tube and six cascade type Ranque–Hilsch vortex tube on the performance of counter flow Ranque–Hilsch vortex tubes. International Journal of Refrigeration, 34(6), 1366-1371.
DOI: 10.1016/j.ijrefrig.2011.05.008
Dutta T, Sinhamahapatra KP, Bandyopadhyay SS, 2011. Numerical investigation of gas species and energy separation in the Ranque–Hilsch vortex tube using real gas model. International Journal of Refrigeration, 26(8), 2118-2128.
DOI: 10.1016/j.ijrefrig.2011.06.004
Han X, Li N, Wu K, Wang Z, Tang L, Chen G, Xu X, 2013. The influence of working gas characteristics on energy separation of vortex tube. Applied Thermal Engineering, 61(2), 171-177.
DOI: 10.1016/j.applthermaleng.2013.07.027
Hilsch R, 1947. The use of expansion of gases in a centrifugal field as a cooling process. Review of Scientific Instruments, 18, 108-113.
Im SY, Yu SS, 2012. Effects of geometric parameters on the separated air flow temperature of a vortex tube for design optimization. Energy, 37(1), 154-160.
DOI: 10.1016/j.energy.2011.09.008
Mohammadi S, Farhadi F, 2013. Experimental analysis of a Ranque–Hilsch vortex tube for optimizing nozzle numbers and diameter. Applied Thermal Engineering, 61(2), 500-506.
DOI: 10.1016/j.applthermaleng.2013.07.043
Pourmahmoud N, Hasanzadeh A, Rafiee SE, Rahimi M, 2012. Three dimensional numerical investigation of effect of convergent nozzles on the energy separation in a vortex tube. International Journal of Heat and Technology, 30(2), 133-140.
Pourmahmoud N, Rafiee SE, Rahimi M, Hasanzadeh A, 2013. Numerical energy separation analysis on the commercial Ranque-Hilsch vortex tube on basis of application of different gases. Scientia Iranica, 20(5), 1528-1537.
Pourmahmoud N, Rahimi M, Rafiee SE, Hasanzadeh A, 2014. A numerical simulation of the effect of inlet gas temperature on the energy separation in a vortex tube. Journal of Engineering Science and Technology, 9(1), 81-96.
Rafiee SE, Ayenehpour S, Sadeghiazad MM, 2016. A study on the optimization of the angle of curvature for a Ranque–Hilsch vortex tube, using both experimental and full Reynolds stress turbulence numerical modelling. Heat and Mass Transfer, 52(2), 337-350.
DOI: 10.1007/s00231-015-1562-y
Rafiee SE, Rahimi M, 2013. Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance- Validation and CFD optimization. Energy, 63, 195-204.
DOI: 10.1016/j.energy.2013.09.060
Rafiee SE, Rahimi M, 2014.Three-dimensional simulation of fluid flow and energy separation inside a vortex tube. Journal of Thermophysics and Heat Transfer, 28, 87-99.
DOI: 10.2514/1.T4198
Rafiee SE, Rahimi M, Pourmahmoud N, 2013. Three-dimensional numerical investigation on a commercial vortex tube based on an experimental model-Part I: Optimization of the working tube radius. International Journal of Heat and Technology, 31(1), 49-56.
Rafiee SE, Sadeghiazad MM, 2014a. Three-dimensional and experimental investigation on the effect of cone length of throttle valve on thermal performance of a vortex tube using k–ε turbulence model. Applied Thermal Engineering, 66(1-2), 65-74.
Rafiee SE, Sadeghiazad MM, 2014b. Effect of conical valve angle on cold-exit temperature of vortex tube. Journal of Thermophysics and Heat Transfer, 28(4), 785-794.
DOI: 10.2514/1.T4376
Rafiee SE, Sadeghiazad MM, 2014c. 3D CFD exergy analysis of the performance of a counter flow vortex tube. International Journal of Heat and Technology, 32(1-2), 71-77.
Rafiee SE, Sadeghiazad MM, 2015. 3D numerical analysis on the effect of rounding off edge radius on thermal separation inside a vortex tube. International Journal of Heat and Technology, 33(1), 83-90.
Rafiee SE, Sadeghiazad MM, 2016. Three-dimensional computational prediction of vortex separation phenomenon inside Ranque-Hilsch vortex tube. Aviation, 20(1), 21-31.
DOI: 10.3846/16487788.2016.1139814
Rafiee SE, Sadeghiazad MM, Mostafavinia N, 2015. Experimental and numerical investigation on effect of convergent angle and cold orifice diameter on thermal performance of convergent vortex tube. Journal of Thermal Science and Engineering Applications, 7(4), 041006.
DOI: 10.1115/1.4030639
Rahimi M, Rafiee SE, Pourmahmoud N, 2013. Numerical investigation of the effect of divergent hot tube on the energy separation in a vortex tube. International Journal of Heat and Technology, 31(2), 17-26.
Ranque GJ, 1933. Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air. Le Journal de Physique et le Radium, 4, 112-114.
Shamsoddini R, Hossein Nezhad A, 2010. Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube. International Journal of Refrigeration, 33(4), 774-782.
DOI: 10.1016/j.ijrefrig.2009.12.029
Skye HM, Nellis GF, Klein, SA, 2006. Comparison of CFD analysis to empirical data in a commercial vortex tube. International Journal of Refrigeration, 29, 71-80.
Thakare HR, Parekh AD, 2015. Computational analysis of energy separation in counter—flow vortex tube. Energy, 85, 62-77.
DOI: 10.1016/j.energy.2015.03.058
Valipour MS, Niazi N, 2011. Experimental modeling of a curved Ranque-Hilsch vortex tube refrigerator. International Journal of Refrigeration, 34, 1109-1116.
Xue Y, Arjomandi M, Kelso R, 2013a. Energy analysis within a vortex tube. Experimental Thermal and Fluid Science, 52, 139-145.
DOI: 10.1016/j.expthermflusci.2013.09.004
Xue Y, Arjomandi M, Kelso R, 2013b. Experimental study of the thermal separation in a vortex tube. Experimental Thermal and Fluid Science, 46, 175-182.
DOI: 10.1016/j.expthermflusci.2012.12.009

Memo

Memo:
Received date: 2015-12-03;Accepted date: 2016-01-14。
Corresponding author: Seyed Ehsan Rafiee,E-mail:s.e.rafiee@mee.uut.ac.ir
Last Update: 2016-07-06