Abramowitz M, Stegun IA (1965). Handbook of mathematical functions. Dover Publications, New York.
Bhattacharyya R (1965). Uber die berechnung des wellenwiderstandes nach verschiedenen verfahren und vergleich mit einigen experimentellen ergebrissen. Inst. für Schiffbau der Universität Hamburg, Hamburg, Report No. 149. DOI: 10.15480/882.730
Dawson E (2014). An investigation into the effects of submergence depth, speed and hull length-to-diameter ratio on the near-surface operation of conventional submarines. PhD thesis, University of Tasmania, Hobart, Australia.
Doctors LJ, Beck RF (1987a). Numerical aspects of the Neumann-Kelvin problem. Journal of Ship Research, 31(1), 1-13.
Doctors LJ, Beck RF (1987b). Convergence properties of the Neumann-Kelvin problem for a submerged body. Journal of Ship Research, 31(4), 227-234.
Farell C (1973). On the wave resistance of a submerged spheroid. Journal of Ship Research, 17(1), 1-11.
Flowtech International AB (2012). SHIPFLOW? 4.7 users manual. Flowtech International, Gothenburg, Sweden.
Gertler M (1950). Resistance experiments on a systematic series of streamlined bodies of revolution -for application to the design of high-speed submarines. David Taylor Model Basin, Washington, DC, Report C-297.
Gourlay TP (2014). ShallowFlow: a program to model ship hydrodynamics in shallow water. 33rd International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2014, San Francisco, USA, Paper No. OMAE2014-23291. DOI: 10.1115/OMAE2014-23291
Groves NC, Huang TT, Chang MS (1989). Geometric characteristics of DARPA SUBOFF models (DTRC model Nos. 5470 and 5471). David Taylor Research Centre, Bethesda, USA, report DTRC/SHD-1298-01.
Guével P, Delhommeau G, Cordonnier JP (1977). Numerical solution of the Neumann-Kelvin problem by the method of singularities. 2nd International Conference on Numerical Ship Hydrodynamics, Berkeley, 107-123.
Havelock TH (1932). The theory of wave resistance. Proceedings of the Royal Society of London, Series A, 138(835), 339-348.DOI: 10.1098/rspa.1932.0188
Hess JL, Smith AMO (1964). Calculation of nonlifting potential flow about arbitrary three-dimensional bodies. Journal of Ship Research, 8(2), 22-44.
Hong YS (1983). Computation of nonlinear wave resistance. David W Taylor Naval Ship Research and Development Center, Bethesda, USA, 104-126.
Huang T, Liu H, Groves L, Forlini T, Blanton J, Gowing S (1994). Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFF experimental program. 19th Symposium on Naval Hydrodynamics, Washington, DC, USA.
Michell JH (1898). The wave resistance of a ship. Philosophical Magazine, Series 5, 45(272), 106-123. DOI: 10.1080/14786449808621111
Newman JN (1987). Evaluation of the wave-resistance Green function: Part 1-the double integral. Journal of Ship Research, 31(2), 79-90.
Newman JN (1992). Marine hydrodynamics. MIT Press, Cambridge, USA, 271, 280.
Noblesse F (1981). Alternative integral representations for the Green function of the theory of ship wave resistance. Journal of Engineering Mathematics, 15(4), 241-265.
Noblesse F, Huang F, Yang C (2013). The Neumann-Michell theory of ship waves. Journal of Engineering Mathematics, 79, 51-71.DOI: 10.1007/s10665-012-9568-7
The Mathworks (2014). MATLAB and statistics toolbox release 2014a. The MathWorks, Inc., Natick, USA.
Tuck EO, Scullen DC, Lazauskas L (2002). Wave patterns and minimum wave resistance for high-speed vessels. 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan.
Wehausen JV, Laitone EV (1960). Surface waves. Encyclopedia of Physics IX, Springer-Verlag, Berlin, Heidelberg, 484.