Akyildiz H, Unal N (2006). Sloshing in a three-dimensional rectangular container: numerical simulation and experimental validation. Ocean Engineering, 33(16), 2135-2149.
Arafa M (2007). Finite element analysis of sloshing in rectangular liquid-filled containers. Journal of Vibration Control, 13(7), 883-903.
Blumberg AF, Mellor GL (1980). A coastal ocean numerical model. Mathematical Modeling of Estuarine Physics, Proceedings of an International Symposium, Berlin, 203-219.
Chen BF, Nokes R (2005). Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular container. Journal of Computational Physics, 209(1), 47-81.
Chern MJ, Borthwick AGL, Taylor RE (1999). A pseudospectral -transformation model of 2-D nonlinear waves. Journal of Fluids and Structures, 13(5), 607-630.
Cho JR, Lee HW, Ha SY (2005). Finite element analysis of resonant sloshing response in 2D baffled container. Journal of Sound Vibration, 288(4/5), 829-845.
Dai L, Xu L (2006). A numerical scheme for dynamic liquid sloshing in horizontal cylindrical containers. Proceedings of the institution of mechanical engineers, Part-D. Journal of Automobile Engineering, 20(7), 901-918.
Eswaran M, Saha UK (2009a). Low steeping waves simulation in a vertical excited container using ?-transformation. 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, USA, OMAE 2009-80248.
Eswaran M, Saha UK (2009b). Numerical simulation of low steeping waves in a horizontally excited container using sigma transformation. Proceedings of the 3th International Congress on Computational Mechanics and Simulation (ICCMS-09), Bombay, India, M27.
Eswaran M, Saha UK (2010). Waves simulation in an excited horizontal cylindrical container using ?-transformation. ASME International Mechanical Engineering Congress & Exposition, Vancouver, Canada, IMECE 2010-39752.
Eswaran M, Saha UK, Maity D (2009). Effect of baffles on a partially filled cubic container: Numerical simulation and experimental validation. Computers and Structures, 87(3/4), 198-205.
Eswaran M, Singh A, Saha UK (2011). Experimental measurement of the surface velocity field in an externally induced sloshing tank. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 225(3), 133-148.
Faltinsen OM (1974). A nonlinear theory of sloshing in rectangular containers. Journal of Ship Research, 18(4), 224-241.
Faltinsen OM, Rognebakke OF, Lukovsky IA, Timokha AN (2000). Multidimensional modal analysis of nonlinear sloshing in a rectangular container with finite water depth. Journal of Fluid Mechanics, 407, 201-234.
Faltinsen OM, Timokha AM (2002). Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular container with small fluid depth. Journal of Fluid Mechanics, 470, 319-357.
Faraday M (1831). On a peculiar class of acoustical figures, and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil Trans R Soc Lond., 121, 299–340.
Ferziger JH, Peric M (2002). Computational methods for fluid dynamics. 3rd rev. edition, Springer-Verlag, Berlin, Heidelberg, New York.
Frandsen JB (2004). Sloshing in excited containers. Journal of Computational Physics, 196, 53-87.
Frandsen JB, Borthwick AGL (2003). Simulation of sloshing motions in fixed and vertically excited containers using a 2-D inviscid σ -transformed finite difference solver. Journal of Fluids and Structures, 18, 197-214.
Graham EW, Rodriquez AM (1952). Characteristics of fuel motion which affect airplane dynamics. Journal of Applied Mechanics, 19(3), 381-388.
Hill DF (2003). Transient and steady-state amplitudes of forced waves in rectangular basins. Physics of Fluids, 15(6), 1576-1587.
Hirt CW, Nichols BD (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal Computational Physics, 39(1), 201-205.
Housner GW (1957). Dynamic pressures on accelerated fluid containers. Bulletin of the Seismological Society of America, 47(1), 15-35.
Housner GW (1963). The dynamic behavior of water containers. Bulletin of the Seismological Society of America, 53(2), 381-387.
Ibrahim RA (2005). Liquid sloshing dynamics: Theory and applications. 1st ed. Cambridge University Press, New York.
Jacobsen LS, Ayre RS (1951). Hydrodynamic experiments with rigid cylindrical containers subjected to transient motions. Bulletin of the Seismological Society of America, 41(4), 313-346.
Maleki A, Ziyaeifar M (2008). Sloshing damping in cylindrical liquid storage containers with baffles. Journal of Sound and Vibration, 311, 372-385.
Mellor GL, Blumberg AF (1985). Modeling vertical and horizontal diffusivities with the sigma coordinate system. Monthly Weather Review, 113, 1379-1383.
Phillips NA (1957). A coordinate system having some special advantages for numerical forecasting. Journal of Atmospheric Sciences, 14, 184-185.
Popov G, Sankar S, Sankar TS, Vatistas GH (1993). Dynamics of liquid sloshing in horizontal cylindrical road containers. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 207-C6, 399-406.
Sriram V, Sannasiraj SA, Sundar S (2006). Numerical simulation of 2D sloshing waves due to horizontal and vertical random excitation. Applied Ocean Research, 28, 19-32.
Turnbull MS, Borthwick AGL, Taylor RE (2003). Numerical wave container based on a -transformed finite element inviscid flow solver. International Journal for Numerical Methods in Fluids, 42, 641-663.
Wang CZ, Khoo BC (2005). Finite element analysis of two-dimensional nonlinear sloshing problems in random excitations. Ocean Engineering, 32, 107-133.