[1] ROSENBLATT M. Hydrodynamic impact on displacement ship hulls[R]. Washington, D C: Ship Structure Committee: PB96-12901, 1995.
[2] OCHI M K, MOTTER L E. Prediction of slamming characteristics and hull responses for ship design[J]. SNAME Transactions, 1973, 81: 144-176.
[3] OCHI M K. Experiments on the effective of bow form on ship slamming[R]. DTMB: report1400, 1962.
[4] STAVOVY A B, CHANG S L. Analytical determination of slamming pressure for high speed vehicles in waves[J]. Journal of Ship Research, 1976, 20(4): 190-198.
[5] VON K. The impact of seaplane floats during landing[R]. NACA TN 321, Washington D C: National Advisory Committee for Aeronautics, 1929.
[6] CHU W, ABRAMSON H N. Hydrodynamic theories of ship slamming review and extension[J]. Journal of Ship Research, 1961, 4(4): 9-21.
[7] WAGNER H. Uber stoss-und gleitvorgange an der oberflache von flussigkeiten[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215.
[8] ARMAND J L, COINTE R. Hydrodynamic impact analysis of a circular cylinder[C]// Proc 5th International Offshore Mechanics and Arctic Engineering. Tokyo, 1987: 609-634. [9] SZEBEHELY V G. Hydrodynamic approach to the slamming of ships[C]// 2nd Mid-western Conference on Fluid Mechanics. 1952.
[10] HOWIS S D, OCHENSON J R, WILSON S K. Incompressible water entry problems at small deadrise angles[J]. Journal of Fluid Mechanics, 1991, 222: 215-230.
[11] ZHAO R, FALTINSEN O M. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993, 246: 593-612.
[12] WANATABLE T. Analytical expression of hydrodynamic impact pressure by matched asymptotic expansion technique[J]. Trans West Japan Society of Naval Architect, 1986, 71(1): 77-85.
[13] KOROBKIN A A, IAFRATI A. Hydrodynamic loads during initial stage of floating body impact[J]. Journal of Fluids and Structures, 2005, 21(4): 413-427.
[14] KOROBKIN A, GUERETB R, MALENICA S. Hydroelastic coupling of beam finite element model with Wagner theory of water impact[J]. Journal of Fluids and Structures, 2006, 22(4): 493-504.
[15] MEI X, LIU Y, YUE D K P. On the water impact of general two-dimensional sections[J]. Applied Ocean Research, 1999, 21(1): 1-15.
[16] YETTOU El-M, DESROCHERS A, CHAMPOUX Y. A new analytical model for pressure estimation of symmetrical water impact of a rigid wedge at variable velocities[J]. Journal of Fluids and Structures, 2007, 23(3): 501-522.
[17] OLIVER J M. Second-order Wagner theory for two-dimensional water-entry problems at small deadrise angles[J]. Journal of fluid mechanics, 2007, 572: 59-85.
[18] KOROBKIN A A. Second-order Wagner theory of wave impact[J]. Journal of Engineering Mathematics, 2007, 58(1): 121-139.
[19] CUMBERBATCH E. The impact of a water wedge on the wall[J]. Journal of Fluid Mechanics, 1960, 7:353-374.
[20] DOBROVOLS’KAYA Z N. On some problems of similarity flow of fluids with a free surface[J]. Journal of Fluid Mechanics, 1969, 36: 805-829.
[21] GRECO M. A two dimensional study of green water loading[D]. Oslo: Norwegian University of Science and Technology, 2001.
[22] ZHANG S, YUE D K P, TANIZAWA K. Simulation of plunging wave impact on a vertical wall[J]. Journal of Fluid Mechanics, 1996, 327: 221-254.
[23] XU Guodong. Fluid/rigid-body impact problem and study of similarity solution[D]. Harbin: Harbin Engineering University, 2008.
[24] WU G X, SUN H, HE Y S. Numerical simulation and experimental study of water entry of a wedge in free fall motion[J]. Journal of Fluids and Structures, 2004, 19(3): 277-289.
[25] XU G D, DUAN W Y, WU G X. Similarity solution for wedge-shaped fluid/structure impact[C]// 23rd International Workshop on Water Waves and Floating Bodies. Jeju, Korea, 2008: 176-179. [26] SEMENOV Y. IAFRATI A. On the nonlinear water entry problem of asymmetric wedges[J]. Journal of Fluid Mechanics, 2006, 547: 231-256.
[27] LONGUET-HIGGINS M S, COKELET E D. The deformation of steep surface waves on water[J]. Proceedings of the Royal Society. London A, 1976, 350: 1-26.
[28] IAFRATI A, CARCATERRA A, CIAPPI E. Hydroelastic analysis of a simple oscillator impacting the free surface[J]. Journal of Ship Research, 2000, 44(2): 278-289.
[29] IAFRATI A, KOROBKIN A A. Starting flow generated by the impulsive start of a floating wedge[J]. Journal of Engineering Mathematics, 2005, 51(2): 99-126.
[30] ZHAO R, FALTINSEN O M, AARSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]// Proceedings of the 21st Symposium on Naval Hydrodynamics. Trondheim, 1996: 408-423.
[31] LU C H, HE Y S, WU G X. Coupled analysis of nonlinear interaction between fluid and structure during impact[J]. Journal of Fluids and Structures, 2000, 14(1): 127-146.
[32] WU G X. Numerical simulation of water entry of twin wedges[J]. Journal of Fluids and Structures, 2006, 22(1): 99-108.
[33] WU G X. Fluid impact on a solid boundary[J]. Journal of Fluids and Structures, 2007, 23(5): 755-765.
[34] WU G X. Liquid column and liquid droplet impact[J]. Quarterly Journal of Mechanics and Applied Mathematics, 2007, 60(4): 497-511.
[35] TROESCH A W, KANG C G. Hydrodynamic impact loads on three dimensional bodies[C]// Proceedings of the 16th Symposium on Naval Hydrodynamics. Berkeley, 1987.
[36] BATTISTIN D, IAFRATI A. Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies[J]. Journal of Fluids and Structures, 2003, 17(5): 643-664.
[37] PESUEX B, GORNET L, DONGUY B. Hydrodynamic impact: numerical and experimental investigations[J]. Journal of Fluids and Structures, 2005, 21(3): 277-303.
[38] FALTINSEN O M, CHEN Z A. A generalized Wagner theory method for three dimensional slamming[J]. Journal of Ship Research, 2005, 49(4): 279-287.
[39] SCOLAN Y M, KOROBKIN A A. Three dimensional theory of water impact. Part 1. Inverse Wagner problem[J]. Journal of Fluid Mechanics, 2001, 440: 293-326. [
40] SCOLAN Y M, KOROBKIN A A. Energy distribution from vertical impact of a three-dimensional solid body onto the flat free surface of an ideal fluid[J]. Journal of Fluids and Structures, 2003, 17(3): 275-286.
[41] ZHU X Y, FALTINSEN O M, HU C H. Water entry and exit of a horizontal circular cylinder[J]. Journal of Offshore Mechanics and Arctic Engineering, 2007, 129(2): 253-264.
[42] HU C H, KASHIWAGI M. A CIP-based method for numerical simulation of violent free surface flows[J]. Journal of Marine Science, 2004, 9(1): 143-157.
43] KLEEFSMAN K M T, FEKKEN G, VELDMAN A E P, et al. A VOF based simulation method for wave impact problems[J]. Journal of Computational Physics, 2005, 206(1): 363-393.
[44] SAMES P C, SCHELLIN T, MUZAFERIJA E S. Application of a two-fluid finite volume method to ship slamming[J]. Journal of Offshore Mechanics and Arctic Engineering, 1999, 121(1): 47-52.
[45] OGER G, DORING M, FERRANT P. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, 213(2): 803-822.
[46] OGER G, ALESSANDRINI B, FERRANT P. 3-D impact flows using an enhanced parallelized SPH model[C]// Proceedings of International Conference on Violent Flows. Fukuoka, Japan, 2007: 103-111.
[47]GRECO M, BAZZI T, COLICCHIO G. 3-D ship-seakeeping problem: weak-scatterer theory plus shallow-water on deck[C]// Proceedings of the 23rd International Workshop on Water Waves and Floating Bodies. Jeju, 2008: 69-72.
[48] AQUELET N, SOULI M, OLOSSON L. Euler–Lagrange coupling with damping effects: application to slamming problems[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(1): 110-132.